This repository contains a MATLAB implementation for Multimodal Subspace Independent Vector Analysis (MSIVA).
Simulation code can be found in simulation.m
.
MSIVA initialization workflow is implemented in run_mgpca_ica.m
. Unimodal initialization workflow is implemented in run_pca_ica.m
. Multimodal initialization workflow is implemented in run_mgpca_gica.m
.
Neuroimaging experiment code can be found in experiment.m
.
Code for the ISBI 2023 paper figures can be found in figures/ISBI2023SIVA
.
Fig. 1: plot_subspace_struct.ipynb
Fig. 2: plot_sim.ipynb
Fig. 3: plot_sim.ipynb
Fig. 4: plot_img.ipynb
Fig. 5: plot_img.ipynb
Fig. 6: dualmap.m
Code for the bioRxiv preprint figures can be found in figures/Journal2024MSIVA
.
Fig. 1: plot_subspace_struct.ipynb
Fig. 3: plot_sim.ipynb
Fig. 4: plot_sim.ipynb
Fig. 5: plot_img_ukb.ipynb
Fig. 6: plot_img_sz.ipynb
Fig. 7: plot_img_ukb.ipynb
Fig. 8: plot_img_sz.ipynb
Figs. 9 & 10: dualcodeImage_AY_geomedian.m
Fig. 11: plot_sig_voxel.ipynb
Fig. 12: (1) Run age_delta.m
to compute brain-age delta. (2) Run compute_geometric_median.py
to compute geometric median of brain-age delta. (3) Run phenotype_map.py
to compute spatial correlation between brain-age delta and phenotype variable. (4) Use dualcodeImage_beta1.m
, dualcodeImage_delta2p_std.m
, dualcodeImage_delta2p_geomedian.m
, and dualcodeImage_phenotype.m
to plot the dual-coded maps.
Fig. 13: dualcodeImage_beta1.m
Fig. 14: plot_img_ukb_rdc.ipynb
Fig. 15: plot_img_sz_rdc.ipynb
Figs. 16 & 17: dualcodeImage_AY_geomedian.m
Fig. 18: plot_num_crossmodal_voxel.ipynb
Figs. 19 & 20: compare_mmiva_msiva_ukb.ipynb
Figs. 21 & 22: compare_mmiva_msiva_sz.ipynb
Group ICA Of fMRI Toolbox (GIFT)
Multidataset Independent Subspace Analysis (MISA)
If you find this repository useful, please consider citing at least one of the following papers:
@article {li2024multimodal,
author = {Li, Xinhui and Kochunov, Peter and Adali, Tulay and Silva, Rogers F and Calhoun, Vince},
title = {Multimodal subspace independent vector analysis effectively captures the latent relationships between brain structure and function},
elocation-id = {2023.09.17.558092},
year = {2024},
doi = {10.1101/2023.09.17.558092},
publisher = {Cold Spring Harbor Laboratory},
URL = {https://www.biorxiv.org/content/early/2024/10/22/2023.09.17.558092},
eprint = {https://www.biorxiv.org/content/early/2024/10/22/2023.09.17.558092.full.pdf},
journal = {bioRxiv}
}
@inproceedings{li2023multimodal,
title={Multimodal subspace independent vector analysis better captures hidden relationships in multimodal neuroimaging data},
author={Li, Xinhui and Adali, Tulay and Silva, Rogers F and Calhoun, Vince D},
booktitle={2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI)},
pages={1--5},
year={2023},
organization={IEEE}
}
@article{silva2020multidataset,
title={Multidataset independent subspace analysis with application to multimodal fusion},
author={Silva, Rogers F and Plis, Sergey M and Adal{\i}, T{\"u}lay and Pattichis, Marios S and Calhoun, Vince D},
journal={IEEE Transactions on Image Processing},
volume={30},
pages={588--602},
year={2020},
publisher={IEEE}
}