Skip to content

Tensorflow implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" (Ledig et al. 2017)

License

Notifications You must be signed in to change notification settings

trevor-m/tensorflow-SRGAN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

52 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SRGan in Tensorflow

This is an implementation of the paper Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network using TensorFlow.

Usage

Set up

  1. Download the VGG19 weights provided by TensorFlow-Slim. Place the vgg_19.ckpt file in this directory.
  2. Download a dataset of images. I recommend ImageNet or Places205. Specify the directory containing your dataset using the --train-dir argument when training the model.

Training

SRResNet-MSE

python train.py --name srresnet-mse --content-loss mse --train-dir path/to/dataset

SRResNet-VGG22

python train.py --name srresnet-vgg22 --content-loss vgg22 --train-dir path/to/dataset

SRGAN-MSE

python train.py --name srgan-mse --use-gan --content-loss mse --train-dir path/to/dataset --load results/srresnet-mse/weights-1000000

SRGAN-VGG22

python train.py --name srgan-vgg22 --use-gan --content-loss vgg22 --train-dir path/to/dataset --load results/srresnet-mse/weights-1000000

SRGAN-VGG54

python train.py --name srgan-vgg54 --use-gan --content-loss vgg54 --train-dir path/to/dataset --load results/srresnet-mse/weights-1000000

Results

Set5 Ledig SRResNet This SRResNet Ledig SRGAN This SRGAN
PSNR 32.05 32.11 29.40 28.21
SSIM 0.9019 0.8933 0.8472 0.8200
Set14 Ledig SRResNet This SRResNet Ledig SRGAN This SRGAN
PSNR 28.49 28.61 26.02 25.74
SSIM 0.8184 0.7809 0.7397 0.6909
BSD100 Ledig SRResNet This SRResNet Ledig SRGAN This SRGAN
PSNR 27.58 27.57 25.16 24.80
SSIM 0.7620 0.7346 0.6688 0.6314

About

Tensorflow implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" (Ledig et al. 2017)

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages