Skip to content

Commit

Permalink
[CODEGEN][CONTRIB] Various update for CoreML codegen (apache#5934)
Browse files Browse the repository at this point in the history
* [CODEGEN][CONTRIB] Various update for CoreML codegen

* fix lint error
  • Loading branch information
kazum authored and Trevor Morris committed Jun 30, 2020
1 parent 019a495 commit 6469f7d
Show file tree
Hide file tree
Showing 4 changed files with 144 additions and 26 deletions.
1 change: 1 addition & 0 deletions apps/ios_rpc/tvmrpc/TVMRuntime.mm
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@
#include "../../../src/runtime/dso_library.cc"
#include "../../../src/runtime/file_util.cc"
#include "../../../src/runtime/library_module.cc"
#include "../../../src/runtime/metadata_module.cc"
#include "../../../src/runtime/module.cc"
#include "../../../src/runtime/ndarray.cc"
#include "../../../src/runtime/object.cc"
Expand Down
42 changes: 32 additions & 10 deletions python/tvm/contrib/target/coreml.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,6 +56,27 @@ def _convert_batch_flatten(builder, name, inputs, outputs, args, attrs):
output_name=outputs[0]
)

def _convert_expand_dims(builder, name, inputs, outputs, args, attrs):
if attrs.axis >= 0:
axes = list(range(attrs.axis, attrs.axis+attrs.num_newaxis))
else:
axes = list(range(attrs.axis-attrs.num_newaxis+1, attrs.axis+1))

builder.add_expand_dims(
name=name,
input_name=inputs[0],
output_name=outputs[0],
axes=axes
)

def _convert_relu(builder, name, inputs, outputs, args, attrs):
builder.add_activation(
name=name,
non_linearity='RELU',
input_name=inputs[0],
output_name=outputs[0]
)

def _convert_softmax(builder, name, inputs, outputs, args, attrs):
builder.add_softmax_nd(
name=name,
Expand Down Expand Up @@ -111,6 +132,8 @@ def _convert_global_avg_pool2d(builder, name, inputs, outputs, args, attrs):
'add' : _convert_add,
'multiply' : _convert_multiply,
'clip' : _convert_clip,
'expand_dims' : _convert_expand_dims,
'nn.relu' : _convert_relu,
'nn.batch_flatten' : _convert_batch_flatten,
'nn.softmax' : _convert_softmax,
'nn.conv2d' : _convert_conv2d,
Expand Down Expand Up @@ -207,20 +230,19 @@ def compile(self, out_dir):


@tvm._ffi.register_func("relay.ext.coremlcompiler")
def coreml_compiler(ref):
def coreml_compiler(func):
"""
Create a CoreML runtime from a Relay module.
"""
assert isinstance(func, tvm.relay.function.Function)
model_dir = os.getcwd()
if isinstance(ref, tvm.ir.module.IRModule):
for var, func in ref.functions.items():
name = var.name_hint
builder = CodegenCoreML(name, func)
builder.visit(func.body)
mlmodelc_path = "{}/{}.mlmodelc".format(model_dir, name)
if os.path.exists(mlmodelc_path):
shutil.rmtree(mlmodelc_path)
builder.compile(model_dir)
name = str(func.attrs.global_symbol)
builder = CodegenCoreML(name, func)
builder.visit(func.body)
mlmodelc_path = "{}/{}.mlmodelc".format(model_dir, name)
if os.path.exists(mlmodelc_path):
shutil.rmtree(mlmodelc_path)
builder.compile(model_dir)

ctx = tvm.cpu(0)
return coreml_runtime.create(model_dir, ctx).module
12 changes: 10 additions & 2 deletions src/runtime/contrib/coreml/coreml_runtime.mm
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,9 @@
} else if (dtype == DataType::Float(32)) {
dataType = MLMultiArrayDataTypeFloat32;
size *= sizeof(float);
} else if (dtype == DataType::Int(32)) {
dataType = MLMultiArrayDataTypeInt32;
size *= sizeof(int);
} else {
LOG(FATAL) << "unsupported data type " << dtype;
return;
Expand Down Expand Up @@ -88,6 +91,9 @@
} else if (data_desc.dataType == MLMultiArrayDataTypeFloat32) {
dtype = DataType::Float(32);
size *= sizeof(float);
} else if (data_desc.dataType == MLMultiArrayDataTypeInt32) {
dtype = DataType::Int(32);
size *= sizeof(int);
} else {
LOG(FATAL) << "unexpected data type " << data_desc.dataType;
}
Expand Down Expand Up @@ -135,7 +141,7 @@
PackedFunc CoreMLRuntime::GetFunction(const std::string& name,
const ObjectPtr<Object>& sptr_to_self) {
// Return member functions during query.
if (name == "invoke") {
if (name == "invoke" || name == "run") {
return PackedFunc(
[sptr_to_self, this](TVMArgs args, TVMRetValue* rv) { GetModel("main").Invoke(); });
} else if (name == "set_input") {
Expand All @@ -151,7 +157,7 @@
return PackedFunc([sptr_to_self, this](TVMArgs args, TVMRetValue* rv) {
*rv = GetModel("main").GetNumOutputs();
});
} else {
} else if (model_map_.count(name) != 0) {
// Return the packedfunc which executes the subgraph.
return PackedFunc([sptr_to_self, name, this](TVMArgs args, TVMRetValue* rv) {
CoreMLModel& model = GetModel(name);
Expand Down Expand Up @@ -188,6 +194,8 @@
}
*rv = out;
});
} else {
return PackedFunc();
}
}

Expand Down
115 changes: 101 additions & 14 deletions tests/python/contrib/test_coreml_codegen.py
Original file line number Diff line number Diff line change
Expand Up @@ -95,19 +95,6 @@ def test_annotate():
assert tvm.ir.structural_equal(mod, expected, map_free_vars=True)


@mock.patch('tvm.contrib.coreml_runtime.create')
@mock.patch('tvm.contrib.xcode.compile_coreml')
def test_construct_model(m1, m2):
mod = _create_graph_annotated()

fcompile = tvm._ffi.get_global_func("relay.ext.coremlcompiler")

for var, func in mod.functions.items():
if func.attrs and 'Compiler' in func.attrs and \
func.attrs['Compiler'] == 'coremlcompiler':
fcompile(tvm.IRModule.from_expr(func.body))


@pytest.mark.skipif(not _has_xcode(), reason="Xcode is not available")
def test_compile_and_run():
ctx=tvm.cpu()
Expand All @@ -133,7 +120,107 @@ def test_compile_and_run():
tvm.testing.assert_allclose(out.asnumpy(), expected, rtol=tol, atol=tol)


@mock.patch('tvm.contrib.coreml_runtime.create')
@mock.patch('tvm.contrib.xcode.compile_coreml')
def _construct_model(func, m1, m2):
mod = tvm.IRModule()
mod["main"] = func
mod = transform.AnnotateTarget("coremlcompiler")(mod)
mod = transform.PartitionGraph()(mod)

fcompile = tvm._ffi.get_global_func("relay.ext.coremlcompiler")

for var, func in mod.functions.items():
if func.attrs and 'Compiler' in func.attrs and \
func.attrs['Compiler'] == 'coremlcompiler':
fcompile(func)


def test_add():
shape = (10, 10)
x = relay.var('x', shape=shape)
y = x + x
func = relay.Function([x], y)
_construct_model(func)


def test_multiply():
shape = (10, 10)
x = relay.var('x', shape=shape)
y = x * x
func = relay.Function([x], y)
_construct_model(func)


def test_clip():
shape = (10, 10)
x = relay.var('x', shape=shape)
y = relay.clip(x, a_min=0.0, a_max=1.0)
func = relay.Function([x], y)
_construct_model(func)


def test_batch_flatten():
shape = (10, 10, 10)
x = relay.var('x', shape=shape)
y = relay.nn.batch_flatten(x)
func = relay.Function([x], y)
_construct_model(func)


def test_expand_dims():
shape = (10, 10)
x = relay.var('x', shape=shape)
y = relay.expand_dims(x, axis=0)
func = relay.Function([x], y)
_construct_model(func)

y = relay.expand_dims(x, axis=-1)
func = relay.Function([x], y)
_construct_model(func)


def test_relu():
shape = (10, 10)
x = relay.var('x', shape=shape)
y = relay.nn.relu(x)
func = relay.Function([x], y)
_construct_model(func)


def test_softmax():
shape = (10, 10)
x = relay.var('x', shape=shape)
y = relay.nn.softmax(x, axis=1)
func = relay.Function([x], y)
_construct_model(func)


def test_conv2d():
x = relay.var('x', shape=(1,3,224,224))
w = relay.const(np.zeros((16,3,3,3), dtype='float32'))
y = relay.nn.conv2d(x, w, strides=[2, 2], padding=[1, 1, 1, 1], kernel_size=[3, 3])
func = relay.Function([x], y)
_construct_model(func)


def test_global_avg_pool2d():
shape = (10, 10, 10, 10)
x = relay.var('x', shape=shape)
y = relay.nn.global_avg_pool2d(x)
func = relay.Function([x], y)
_construct_model(func)


if __name__ == "__main__":
test_annotate()
test_construct_model()
test_compile_and_run()
test_add()
test_multiply()
test_clip()
test_expand_dims()
test_relu()
test_batch_flatten()
test_softmax()
test_conv2d()
test_global_avg_pool2d()

0 comments on commit 6469f7d

Please sign in to comment.