forked from neo-ai/tvm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Relay/TRT Integration (whole graph only) (neo-ai#54)
* Add tensorrt backend. Fix merge Fix merge and clean up logs Add BiasAdd, Concat, padding ceil mode, and clean up code Fix formatting and remove unused headers uncomment models Fix bug with variable input, clean up Don't split batch norm Move TRT execution to TrtExecutor Clean up Clean up Add paritioning Implement graph_runtime execution for Relay/TRT Fix bug in extern op Fix compilation Add EnableTrt pass to perform same modification as previous wholegraphannotator Renable NNVM TRT Remove SimplifyBatchnorm, add rules for converting ops Fix format, remove unused tests Enable multiple outputs Fix multiple outputs Fix activation lookup Fix no newline at eof Add license header. Add consistency test to models Add method to check TRT used. Improve comments Fix lint Add util to check TRT version Add if guards around TRT5.1 APIs Add env var for workspace size, fix logger fix build Add TRT versioning to EnableTrt pass Fix build error in DLR Fix compile for DLR Update dmlc-core, fix copyright header, undo change to includes Remove unused headers Fix IsTrtCompatible visitor and move op list to constructor Add dropout to compatible ops for CheckTrtCompatible only. Add not compatible test Add squeeze, transpose, reshape, pad, and reduce ops. Add transpose on weights workaround Fix formatting. Add unit tests Support transpose on weights for conv2d and dense. Support asymmetric padding. Temp fix for 1D inputs. Add units tests for all ops. Support StridedSlice, AdaptivePooling approximation, Pytorch addmm fixer pass Support (2,3,0,1) tranpose on weights Allow stride to be incomplete. Support ConstantNode -> kWeight Fix pass serialized graph by value in runtime. Allow inclusive count for strided pool Comments, disable failign test Fix CI lint Removed unused variables from TrtBuilder. Add more comments Fix build for TRT4 Add GetTrtVersion(), Move convert map to function, remove uneeded include, make batch_size_, logger_ TrtBuilder members, check output existence Use shared_ptr for converters. Add check for num outputs and inputs Support image.resize Make GetOpConverters return a shared_ptr Clarify count inclusive padding weirdness Use external codegen/runtime Move to src/runtime/contrib/tensorrt. Add Save and Load methods for tensorrt module. Rename some classes Require format to be tensorrt so that loader knows how to load FoldConstants Destroy engine and context after use. Store TRT weights from op converters. Formatting Always apply ConvertLayout to NCHW Clean up Add ASF header Change ObjectRef -> NodeRef Fix lint Fix pylint Fix bug with scalar weights Making TRT cmake more informative Make tensorrt tests dependent on whether trt codegen is enabled Add serialization test. * Refactor EnableTRT checkers * Fix const weight detection * remove tensorrt_module.h, add test for multiple outputs. Use normal GetShape. Remove GetType. Add flag for additional model testing Undo add comments to prevent conflicts * Separate TRT from relay. Add docstrings and more comments. Move all passes to python. Remove double lookup for Execute Formatting Fix lint Fix pylint Rename codegen_tensorrt. Check registry get. Add comments Make trt codegen off by default. * disable for ci * TRT codegen can be turned on independently * Fix tests * Fix build without runtime * Enable AvgPool approximation * Remove change to cmake config * Move passes to PreprocessForTrt. Use op.name. Rename LegalizeLayoutTransform. * Add newlin to EOF. Remove else. Reserve space for vectors * Remove AdaptivePool2D commentted out code. Add comment for transposed weight workaround * Rename IsCompatibleFn * Use ++i instead of i++ * Improve incompatible messages, use string::empty, small improvements * Use constructor to fill func_params * Remove std::move * Use opt level 3, add helper to check whether to run test, improve load_params * Replace TransposeRSCKtoCKRS/KCRS with TransposeWeights4D * Clean up VisitExpr(CallNode) for args
- Loading branch information
Trevor Morris
committed
Apr 13, 2020
1 parent
0d48361
commit 6d90020
Showing
13 changed files
with
3,457 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
# TensorRT Runtime | ||
if(USE_TENSORRT) | ||
# Enable codegen as well | ||
SET(USE_TENSORRT_CODEGEN ON) | ||
if(IS_DIRECTORY ${USE_TENSORRT}) | ||
set(TENSORRT_ROOT_DIR ${USE_TENSORRT}) | ||
message(STATUS "Custom TensorRT path: " ${TENSORRT_ROOT_DIR}) | ||
endif() | ||
find_path(TENSORRT_INCLUDE_DIR NvInfer.h HINTS ${TENSORRT_ROOT_DIR} PATH_SUFFIXES include) | ||
find_library(TENSORRT_LIB_DIR nvinfer HINTS ${TENSORRT_ROOT_DIR} PATH_SUFFIXES lib) | ||
find_package_handle_standard_args(TENSORRT DEFAULT_MSG TENSORRT_INCLUDE_DIR TENSORRT_LIB_DIR) | ||
if(NOT TENSORRT_FOUND) | ||
message(ERROR "Could not find TensorRT.") | ||
endif() | ||
message(STATUS "TENSORRT_LIB_DIR: " ${TENSORRT_LIB_DIR}) | ||
include_directories(${TENSORRT_INCLUDE_DIR}) | ||
list(APPEND TVM_RUNTIME_LINKER_LIBS ${TENSORRT_LIB_DIR}) | ||
|
||
# NNVM TRT runtime sources | ||
file(GLOB TENSORRT_NNVM_SRCS src/contrib/subgraph/*.cc) | ||
list(APPEND RUNTIME_SRCS ${TENSORRT_NNVM_SRCS}) | ||
|
||
# Relay TRT runtime sources | ||
file(GLOB TENSORRT_RELAY_CONTRIB_SRC src/runtime/contrib/tensorrt/*.cc) | ||
list(APPEND RUNTIME_SRCS ${TENSORRT_RELAY_CONTRIB_SRC}) | ||
list(APPEND RUNTIME_SRCS src/relay/backend/contrib/tensorrt/common_utils.cc) | ||
|
||
# Set defines | ||
set_source_files_properties(${RUNTIME_GRAPH_SRCS} | ||
PROPERTIES COMPILE_DEFINITIONS "TVM_GRAPH_RUNTIME_TENSORRT") | ||
endif() | ||
# TensorRT Codegen only. This can be enabled independently of USE_TENSORRT to | ||
# enable compilation of TensorRT modules without requiring TensorRT to be | ||
# installed. The compiled modules will only be able to be executed using a TVM | ||
# built with USE_TENSORRT=ON. | ||
if(USE_TENSORRT_CODEGEN) | ||
message(STATUS "Build with TensorRT codegen") | ||
# Relay TRT codegen sources | ||
file(GLOB TENSORRT_RELAY_CONTRIB_SRC src/relay/backend/contrib/tensorrt/*.cc) | ||
list(APPEND COMPILER_SRCS ${TENSORRT_RELAY_CONTRIB_SRC}) | ||
list(APPEND COMPILER_SRCS src/runtime/contrib/tensorrt/tensorrt_module.cc) | ||
# If runtime is enabled also, set flag for compiler srcs | ||
if(USE_TENSORRT) | ||
set_source_files_properties(${COMPILER_SRCS} | ||
PROPERTIES COMPILE_DEFINITIONS "TVM_GRAPH_RUNTIME_TENSORRT") | ||
endif() | ||
endif() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,194 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# pylint: disable=invalid-name,arguments-differ,no-else-return,unused-argument,missing-docstring | ||
""" | ||
Relay TensorRT codegen. | ||
""" | ||
import tvm | ||
from tvm import relay | ||
from tvm.relay.expr import Call, Constant | ||
|
||
from . import _transform | ||
from .expr_functor import ExprMutator | ||
|
||
def _bind_params(func, params): | ||
""" | ||
Bind the params to the expression as constants. | ||
""" | ||
name_dict = {} | ||
for arg in func.params: | ||
name = arg.name_hint | ||
if name in name_dict: | ||
name_dict[name] = None | ||
else: | ||
name_dict[name] = arg | ||
bind_dict = {} | ||
for k, v in params.items(): | ||
if k not in name_dict: | ||
continue | ||
arg = name_dict[k] | ||
if arg is None: | ||
raise ValueError("Multiple args in the function have name %s" % k) | ||
bind_dict[arg] = relay.expr.const(v) | ||
return relay.expr.bind(func, bind_dict) | ||
|
||
class LegalizeLayoutTranform(ExprMutator): | ||
""" | ||
Legalize Relay layout transforms to transpose ops to simplify TensorRT conversion. | ||
""" | ||
def visit_call(self, expr): | ||
visit = super().visit_call(expr) | ||
if expr.op == tvm.relay.op.get("layout_transform"): | ||
src_layout = expr.attrs['src_layout'] | ||
dst_layout = expr.attrs['dst_layout'] | ||
if src_layout == "NCHW" and dst_layout == "NHWC": | ||
return relay.transpose(visit, axes=[0, 2, 3, 1]) | ||
elif src_layout == "NHWC" and dst_layout == "NCHW": | ||
return relay.transpose(visit, axes=[0, 3, 1, 2]) | ||
elif src_layout == "HWIO" and dst_layout == "OIHW": | ||
return relay.transpose(visit, axes=[3, 2, 0, 1]) | ||
elif src_layout == "HWOI" and dst_layout == "OIHW": | ||
return relay.transpose(visit, axes=[2, 3, 0, 1]) | ||
# may be uneeded | ||
elif src_layout == "HWIO" and dst_layout == "IOHW": | ||
return relay.transpose(visit, axes=[2, 3, 0, 1]) | ||
return visit | ||
|
||
class RemoveDropout(ExprMutator): | ||
""" | ||
Removes all nn.dropout from an expr. | ||
""" | ||
def visit_tuple_getitem(self, expr): | ||
visit = super().visit_tuple_getitem(expr) | ||
if visit.index != 0: | ||
return visit | ||
elif isinstance(visit.tuple_value, Call) and visit.tuple_value.op.name == "nn.dropout": | ||
return visit.tuple_value.args[0] | ||
return visit | ||
|
||
class RemoveMultiplyByOne(ExprMutator): | ||
""" | ||
Removes multiply by 1.0f. This pass when followed by | ||
RemoveRedundantTranspose is intended to remove a pattern of | ||
Transpose([1, 0]) -> Scale(1.0f) -> Transpose([1, 0]) produced by | ||
PyTorch's addmm operator. | ||
""" | ||
def visit_call(self, expr): | ||
if expr.op.name == "multiply": | ||
if isinstance(expr.args[1], Constant): | ||
data = expr.args[1].data.asnumpy() | ||
if data.shape == () and data.item() == 1.0: | ||
return expr.args[0] | ||
return super().visit_call(expr) | ||
|
||
class RemoveRedundantTranspose(ExprMutator): | ||
""" | ||
Removes Transpose([1, 0]) followed by Transpose([1, 0]). This pass, when | ||
preceded by with RemoveMultiplyByOne is intended to remove a pattern of | ||
Transpose([1, 0]) -> Scale(1.0f) -> Transpose([1, 0]) produced by | ||
PyTorch's addmm operator. | ||
""" | ||
def check_axes(self, axes): | ||
return len(axes) == 2 and int(axes[0].value) == 1 and int(axes[1].value) == 0 | ||
|
||
def visit_call(self, expr): | ||
if expr.op.name == "transpose": | ||
if self.check_axes(expr.attrs['axes']): | ||
if isinstance(expr.args[0], Call) and expr.args[0].op.name == "transpose": | ||
if self.check_axes(expr.args[0].attrs['axes']): | ||
return expr.args[0].args[0] | ||
return super().visit_call(expr) | ||
|
||
def PreprocessForTrt(mod): | ||
"""Applies passes to prepare main function for TensorRT conversion. | ||
Parameters | ||
---------- | ||
mod: Module | ||
The original module. | ||
Returns | ||
------- | ||
mod: Module | ||
The module modified for TensorRT. | ||
""" | ||
mod['main'] = LegalizeLayoutTranform().visit(mod['main']) | ||
mod['main'] = RemoveDropout().visit(mod['main']) | ||
mod['main'] = RemoveMultiplyByOne().visit(mod['main']) | ||
mod['main'] = RemoveRedundantTranspose().visit(mod['main']) | ||
return mod | ||
|
||
def GetTrtVersion(): | ||
"""Gets the version of TensorRT that TVM is built against. | ||
Returns | ||
------- | ||
ret: Tuple[int] | ||
TensorRT version as a tuple of major, minor, and patch number. If TVM | ||
is not built with TensorRT, an empty tuple is returned instead. | ||
""" | ||
return tuple(map(int, _transform.GetTrtVersion())) | ||
|
||
def IsTrtRuntimeAvailable(): | ||
if not tvm.get_global_func("relay._transform.GetTrtVersion", True): | ||
return False | ||
return GetTrtVersion() != () | ||
|
||
def EnableTrt(mod, params=None, trt_version=None): | ||
"""Converts the "main" function in the module into one that can be executed using | ||
TensorRT. If any of the operators are not supported by the TensorRT | ||
conversion, the unmodified program will be returned instead. | ||
Parameters | ||
---------- | ||
mod: Module | ||
The original module. | ||
params : dict of str to NDArray | ||
Input parameters to the graph that do not change | ||
during inference time. Used for constant folding. | ||
trt_version : Optional[Tuple[int]] | ||
Which version of TensorRT to target for partitioning as a tuple of | ||
(major, minor, patch). If not specified, will attempt to get using | ||
GetTrtVersion. | ||
Returns | ||
------- | ||
mod: Module | ||
The modified module which will use the TensorRT runtime if compatible. | ||
""" | ||
if not trt_version: | ||
trt_version = GetTrtVersion() | ||
# If TVM wasn't built against TRT, default to target TRT 6. Since the | ||
# actual conversion to TRT is done at runtime, building against TRT is | ||
# not required for compilation. | ||
if not trt_version: | ||
trt_version = (6, 0, 1) | ||
assert isinstance(trt_version, (list, tuple)) | ||
assert len(trt_version) == 3 | ||
|
||
# Apply passes required for TRT | ||
mod = relay.transform.RemoveUnusedFunctions()(mod) | ||
mod = relay.transform.InferType()(mod) | ||
mod = relay.transform.ConvertLayout('NCHW')(mod) | ||
mod = PreprocessForTrt(mod) | ||
if params: | ||
# Bind params so that we can use FoldConstant. | ||
mod['main'] = _bind_params(mod['main'], params) | ||
mod = relay.transform.FoldConstant()(mod) | ||
return _transform.EnableTrt(*trt_version)(mod) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* \file src/relay/backend/contrib/tensorrt/codegen_tensorrt.cc | ||
* \brief Implementation of TensorRT codegen APIs. | ||
*/ | ||
|
||
#include <tvm/node/serialization.h> | ||
#include <tvm/relay/attrs/nn.h> | ||
#include <tvm/relay/expr_functor.h> | ||
#include <tvm/relay/transform.h> | ||
#include <tvm/relay/type.h> | ||
#include <tvm/runtime/module.h> | ||
#include <tvm/runtime/registry.h> | ||
|
||
#include <fstream> | ||
#include <sstream> | ||
|
||
#include "../codegen_c/codegen_c.h" | ||
|
||
namespace tvm { | ||
namespace relay { | ||
namespace contrib { | ||
|
||
/*! | ||
* \brief Generates a TensorRTModule from a relay expression. This "compilation" | ||
* does not require TensorRT since the actual conversion using TensorRT APIs is | ||
* deferred until runtime. This step simply serializes the relay program into a | ||
* string. | ||
*/ | ||
class TensorRTModuleCodegen : public CSourceModuleCodegenBase { | ||
public: | ||
runtime::Module CreateCSourceModule(const NodeRef& ref) override { | ||
std::string serialized_subgraph; | ||
if (ref->IsInstance<FunctionNode>()) { | ||
serialized_subgraph = SaveJSON(Downcast<Function>(ref)->body); | ||
} else if (ref->IsInstance<relay::ModuleNode>()) { | ||
relay::Module mod = Downcast<relay::Module>(ref); | ||
// TODO(trevmorr): support multiple functions. It is currently not | ||
// possible for there to be more than one TRT func, so not a problem yet. | ||
for (const auto& it : mod->functions) { | ||
serialized_subgraph = SaveJSON(Downcast<Function>(it.second)->body); | ||
} | ||
} else { | ||
LOG(FATAL) | ||
<< "The input ref is expected to be a Relay function or module."; | ||
} | ||
const PackedFunc* pf = | ||
runtime::Registry::Get("tvm.contrib.tensorrt.create"); | ||
CHECK(pf != nullptr) | ||
<< "tvm.contrib.tensorrt.create was not found in the registry."; | ||
return (*pf)(serialized_subgraph); | ||
} | ||
}; | ||
|
||
/*! | ||
* \brief The external compiler/codegen tool. It takes a Relay expression/module | ||
* and compiles it into a runtime module. | ||
*/ | ||
runtime::Module TrtCompiler(const NodeRef& ref) { | ||
TensorRTModuleCodegen tensorrt; | ||
return tensorrt.CreateCSourceModule(ref); | ||
} | ||
|
||
TVM_REGISTER_API("relay.ext.tensorrt").set_body_typed(TrtCompiler); | ||
|
||
} // namespace contrib | ||
} // namespace relay | ||
} // namespace tvm |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,46 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* \file src/relay/backend/contrib/tensorrt/common_utils.cc | ||
* \brief Utility functions used by compilation and runtime. | ||
*/ | ||
|
||
#include "common_utils.h" | ||
|
||
namespace tvm { | ||
namespace relay { | ||
namespace contrib { | ||
|
||
std::vector<int> GetShape(const Type& type) { | ||
const auto* ttype = type.as<TensorTypeNode>(); | ||
CHECK(ttype); | ||
std::vector<int> _shape; | ||
_shape.reserve(ttype->shape.size()); | ||
for (size_t i = 0; i < ttype->shape.size(); ++i) { | ||
auto* val = ttype->shape[i].as<IntImm>(); | ||
CHECK(val); | ||
_shape.push_back(val->value); | ||
} | ||
return _shape; | ||
} | ||
|
||
} // namespace contrib | ||
} // namespace relay | ||
} // namespace tvm |
Oops, something went wrong.