Skip to content

Commit

Permalink
[CI] Hotfix CI (see apache#7010) (apache#7025)
Browse files Browse the repository at this point in the history
  • Loading branch information
altanh authored and Trevor Morris committed Dec 4, 2020
1 parent d6acdd0 commit 7069662
Show file tree
Hide file tree
Showing 2 changed files with 11 additions and 52 deletions.
12 changes: 10 additions & 2 deletions python/tvm/relay/testing/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,15 @@ def _np_randn_from_type(t, scale=1, mean=0):


def check_grad(
func, inputs=None, test_inputs=None, eps=1e-6, atol=1e-5, rtol=1e-3, scale=None, mean=0
func,
inputs=None,
test_inputs=None,
eps=1e-6,
atol=1e-5,
rtol=1e-3,
scale=None,
mean=0,
mode="higher_order",
):
"""Perform numerical gradient checking given a relay function.
Expand Down Expand Up @@ -112,7 +120,7 @@ def check_grad(
"""

fwd_func = run_infer_type(func)
bwd_func = run_infer_type(gradient(fwd_func))
bwd_func = run_infer_type(gradient(fwd_func, mode=mode))

if scale is None:
scale = 10 * eps
Expand Down
51 changes: 1 addition & 50 deletions tests/python/relay/test_op_grad_level2.py
Original file line number Diff line number Diff line change
Expand Up @@ -168,63 +168,14 @@ def test_global_avg_pool2d_grad():


def verify_conv2d_grad(dshape, wshape, strides, padding, dilation, groups=1, mode="higher_order"):
try:
import torch
import torch.nn.functional as F
except ImportError:
print("Skip because pytorch is not installed")
return

dtype = "float32"
data = relay.var("data", shape=dshape, dtype=dtype)
weight = relay.var("weight", shape=wshape, dtype=dtype)
conv = relay.nn.conv2d(
data, weight, strides=strides, padding=padding, dilation=dilation, groups=groups
)
fwd_func = relay.Function([data, weight], conv)
fwd_func = run_infer_type(fwd_func)
bwd_func = run_infer_type(gradient(fwd_func, mode=mode))

data_pt = torch.randn(*dshape, dtype=torch.float32, requires_grad=True)
weight_pt = torch.randn(*wshape, dtype=torch.float32, requires_grad=True)
out_pt = F.conv2d(
data_pt, weight_pt, stride=strides, padding=padding, dilation=dilation, groups=groups
)
grad_output_pt = torch.ones(out_pt.shape)
grad_input_pt = (
F.grad.conv2d_input(
dshape,
weight_pt,
grad_output_pt,
stride=strides,
padding=padding,
dilation=dilation,
groups=groups,
)
.detach()
.numpy()
)
grad_weight_pt = (
F.grad.conv2d_weight(
data_pt,
wshape,
grad_output_pt,
stride=strides,
padding=padding,
dilation=dilation,
groups=groups,
)
.detach()
.numpy()
)

for target, ctx in tvm.testing.enabled_targets():
data = tvm.nd.array(data_pt.detach().numpy(), ctx)
weight = tvm.nd.array(weight_pt.detach().numpy(), ctx)
intrp = relay.create_executor(ctx=ctx, target=target)
op_res, (grad_input, grad_weight) = intrp.evaluate(bwd_func)(data, weight)
np.testing.assert_allclose(grad_input.asnumpy(), grad_input_pt, rtol=1e-4, atol=1e-4)
np.testing.assert_allclose(grad_weight.asnumpy(), grad_weight_pt, rtol=1e-4, atol=1e-4)
check_grad(fwd_func, mode=mode)


@tvm.testing.uses_gpu
Expand Down

0 comments on commit 7069662

Please sign in to comment.