forked from neo-ai/tvm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add Quantize/Dequantize Partitioning (apache#5940)
* Implement quant/dequant partitioning on our way get clooooooser clean up (part 1) clean up (part 2) clean up (part 3) clean up (part 4) clean clean cleaanaannanaaananaananaananaan clkjsdflkjlfsjdflkj revert parser changes add docs roll lint roll lint * add option to toggle fully integral check * convert dtype collector to C++ * remove need for `with_dtype` * remove unused imports * roll lint * partially address feedback * roll lint * upgrade to new parser * retrigger CI * roll the dice again
- Loading branch information
Showing
8 changed files
with
616 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,340 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
#pylint: disable=unused-argument, not-context-manager | ||
"""Utilities for partitioning input quantization and output dequantization expressions.""" | ||
import tvm | ||
from tvm import relay | ||
from tvm.relay.expr_functor import ExprMutator, ExprVisitor | ||
|
||
# operators that are allowed in prefix/suffix partitions, because they are used | ||
# to quantize/dequantize | ||
ALLOWED_CONVERSION_OPS = ['add', 'multiply', 'right_shift', 'clip', 'round', 'cast'] | ||
|
||
def partition_conversions(mod, quantized_dtypes, ensure_fully_integral): | ||
"""Partition mod into input quantization, core quantized inference, and output dequantization. | ||
The resulting module includes an additional `main` that fuses all three | ||
partitions together. | ||
Parameters | ||
---------- | ||
mod : tvm.IRModule | ||
Quantized module to partition | ||
quantized_dtypes : Set[str] | ||
Set of data types allowed in quantized operators | ||
ensure_fully_integral : bool | ||
Whether to raise an exception if there are unquantized operators in the result | ||
Returns | ||
------- | ||
fused_mod : tvm.IRModule | ||
Module containing the input quantization (`quantize_inputs`), core | ||
quantized inference (`quantized_main`), output dequantization | ||
(`dequantize_outputs`), and full quantized inference functions | ||
""" | ||
# Partitioning is implemented as in the diagram below: | ||
# | ||
# +----------------------------+ | ||
# |Quantized Inference Function| | ||
# +--------------+-------------+ | ||
# | | ||
# partition_prefix | ||
# | | ||
# +-----+-------------------------+ | ||
# | | | ||
# +--------v---------+ +-----------------v------------------+ | ||
# |Input Quantization| |Rest of Quantized Inference Function| | ||
# +------------------+ +-----------------+------------------+ | ||
# | | ||
# partition_suffix | ||
# | | ||
# +------+---------------------+ | ||
# | | | ||
# +------------------+ +----------v------------+ +-----------v---------+ | ||
# |Input Quantization| |Core Quantized Function| |Output Dequantization| | ||
# +------------------+ +-----------------------+ +---------------------+ | ||
# | ||
# The final module contains all three partitions, as well as a | ||
# `main` function that composes these three functions (depicted below). | ||
# | ||
# +--------------------+-------------------------+-----------------------+ | ||
# | Input Quantization | Core Quantized Function | Output Dequantization | | ||
# +--------------------+-------------------------+-----------------------+ | ||
assert len(mod.functions) == 1 | ||
pre_mod, mid_mod = partition_prefix(mod, quantized_dtypes) | ||
mid_mod, post_mod = partition_suffix(mid_mod, quantized_dtypes) | ||
if ensure_fully_integral: | ||
assert has_only_conversion_ops(pre_mod['main']) | ||
assert relay.analysis.all_dtypes(mid_mod['main']).issubset(quantized_dtypes) | ||
assert has_only_conversion_ops(post_mod['main']) | ||
return fuse_partitions(pre_mod, mid_mod, post_mod) | ||
|
||
|
||
def fuse_partitions(pre_mod, mid_mod, post_mod): | ||
"""Combine prefix, middle, and suffix modules into a single module. | ||
The combined module includes an additional `main` that fuses all three | ||
partitions together. | ||
Parameters | ||
---------- | ||
pre_mod : tvm.IRModule | ||
Module containing an input quantization function | ||
mid_mod : tvm.IRModule | ||
Module containing core of a quantized inference function | ||
post_mod : tvm.IRModule | ||
Module containing an output dequantization function | ||
Returns | ||
------- | ||
fused_mod : tvm.IRModule | ||
Module containing the input quantization, core quantized inference, | ||
output dequantization, and full quantized inference functions | ||
""" | ||
pre_func = pre_mod['main'] | ||
mid_func = mid_mod['main'] | ||
post_func = post_mod['main'] | ||
# create a module containing the prefix, middle, and suffix partitions | ||
fused_mod = tvm.IRModule(functions={ | ||
relay.GlobalVar('quantize_inputs'): pre_func, | ||
relay.GlobalVar('quantized_main'): mid_func, | ||
relay.GlobalVar('dequantize_outputs'): post_func, | ||
}) | ||
# construct a `main` that strings together the partitions, such that its | ||
# behaviour is equivalent to `main` in an *unpartitioned* module | ||
scope_builder = relay.ScopeBuilder() | ||
fused_mod_main_params = [relay.Var(param.name_hint) for param in pre_func.params] | ||
quantized_inputs = scope_builder.let('quantized_inputs', relay.Call( | ||
fused_mod.get_global_var('quantize_inputs'), | ||
fused_mod_main_params | ||
)) | ||
quantized_outputs = scope_builder.let('quantized_outputs', relay.Call( | ||
fused_mod.get_global_var('quantized_main'), | ||
[relay.TupleGetItem(quantized_inputs, i) for i in range(len(pre_func.ret_type.fields))] | ||
)) | ||
dequantized_outputs = scope_builder.let('dequantized_outputs', relay.Call( | ||
fused_mod.get_global_var('dequantize_outputs'), | ||
[quantized_outputs] | ||
)) | ||
scope_builder.ret(dequantized_outputs) | ||
fused_mod['main'] = relay.Function(fused_mod_main_params, scope_builder.get()) | ||
return fused_mod | ||
|
||
|
||
class PrefixCutter(ExprMutator): | ||
"""A mutator for extracting input quantization expressions from a function | ||
The result of `visit` is the core function, and the input quantization | ||
expressions are stored in the `prefix_sb` scope builder. | ||
""" | ||
|
||
def __init__(self, params, quantized_dtypes): | ||
ExprMutator.__init__(self) | ||
self.params = set(params) | ||
self.quantized_dtypes = quantized_dtypes | ||
self.subtree_params = set() | ||
self.new_func_params = [] | ||
self.prefix_sb = relay.ScopeBuilder() | ||
self.prefix_binding_map = {} | ||
|
||
def visit_var(self, var): | ||
if var in self.params: | ||
self.subtree_params.add(var) | ||
return var | ||
|
||
def visit_call(self, call): | ||
# TODO(weberlo) use graph pattern matching? | ||
if not hasattr(call.op, 'name') or call.op.name not in ALLOWED_CONVERSION_OPS: | ||
new_args = [] | ||
for arg in call.args: | ||
new_arg = self.visit(arg) | ||
if len(self.subtree_params) == 0: | ||
new_args.append(new_arg) | ||
else: | ||
assert len(self.subtree_params) == 1 | ||
param = next(iter(self.subtree_params)) | ||
pre_param = self.prefix_sb.let(param.name_hint, new_arg) | ||
self.subtree_params.clear() | ||
mid_param = relay.Var( | ||
param.name_hint, | ||
arg.checked_type) | ||
self.prefix_binding_map[mid_param] = pre_param | ||
# return new parameter, then we can use | ||
# relay.analysis.free_vars at the end of the pass to generate | ||
# new `mid_func` type signature | ||
new_args.append(mid_param) | ||
return relay.Call(call.op, new_args, call.attrs) | ||
|
||
return super().visit_call(call) | ||
|
||
|
||
def partition_prefix(mod, quantized_dtypes): | ||
"""Extract input quantization expressions from `mod['main']`. | ||
Parameters | ||
---------- | ||
mod : tvm.IRModule | ||
Module containing a quantized inference function | ||
quantized_dtypes : Set[str] | ||
Set of data types allowed in quantized operators | ||
Returns | ||
------- | ||
pre_mod : tvm.IRModule | ||
Module containing the input quantization function | ||
mid_mod : tvm.IRModule | ||
Module containing a function with everything except for input quantization | ||
""" | ||
assert len(mod.functions) == 1 | ||
func = mod['main'] | ||
prefix_cutter = PrefixCutter(func.params, quantized_dtypes) | ||
mid_body = prefix_cutter.visit(func.body) | ||
assert not func.type_params, 'unimplemented' | ||
assert func.attrs is None, 'unimplemented' | ||
mid_func = relay.Function( | ||
relay.analysis.free_vars(mid_body), | ||
mid_body) | ||
mid_mod = tvm.IRModule.from_expr(mid_func) | ||
|
||
scope_builder = prefix_cutter.prefix_sb | ||
# make sure we pass through all inputs in the prefix function's return expr | ||
# (even those that don't require quantization) | ||
ret_expr = [] | ||
for param in mid_func.params: | ||
if param in prefix_cutter.prefix_binding_map: | ||
# this param required a conversion, so we collected it in the | ||
# prefix cutter pass, and we can use the pass's mapping from mid | ||
# func params to pre func params | ||
ret_expr.append(prefix_cutter.prefix_binding_map[param]) | ||
else: | ||
# there was no detected conversion for this argument, so we thread | ||
# it through the prefix function untouched | ||
ret_expr.append(relay.Var(param.name_hint, param.checked_type)) | ||
ret_expr = relay.Tuple(ret_expr) | ||
scope_builder.ret(ret_expr) | ||
pre_func_body = scope_builder.get() | ||
pre_func = relay.Function(relay.analysis.free_vars(pre_func_body), pre_func_body) | ||
pre_mod = tvm.IRModule.from_expr(pre_func) | ||
|
||
return pre_mod, mid_mod | ||
|
||
|
||
class SuffixCutter(ExprMutator): | ||
"""A mutator for extracting output dequantization expressions from a function | ||
The result of `visit` is a function containing the output dequantization | ||
expressions, and the middle of the function is stored in `mid_body`. | ||
""" | ||
|
||
def __init__(self, quantized_dtypes): | ||
ExprMutator.__init__(self) | ||
self.mid_body = None | ||
self.quantized_dtypes = quantized_dtypes | ||
|
||
def visit(self, expr): | ||
if hasattr(expr, 'checked_type') and expr.checked_type.dtype in self.quantized_dtypes: | ||
self.mid_body = expr | ||
return relay.Var('input', expr.checked_type) | ||
|
||
return super().visit(expr) | ||
|
||
|
||
def partition_suffix(mod, quantized_dtypes): | ||
"""Extract output dequantization expressions from `mod['main']`. | ||
Parameters | ||
---------- | ||
mod : tvm.IRModule | ||
Module containing a quantized inference function | ||
quantized_dtypes : Set[str] | ||
Set of data types allowed in quantized operators | ||
Returns | ||
------- | ||
pre_mod : tvm.IRModule | ||
Module containing the input quantization function | ||
mid_mod : tvm.IRModule | ||
Module containing a function with everything except for input quantization | ||
""" | ||
assert len(mod.functions) == 1 | ||
func = mod['main'] | ||
suffix_cutter = SuffixCutter(quantized_dtypes) | ||
post_body = suffix_cutter.visit(func.body) | ||
assert not func.type_params, 'unimplemented' | ||
assert func.attrs is None, 'unimplemented' | ||
post_func = relay.Function( | ||
relay.analysis.free_vars(post_body), | ||
post_body, | ||
func.ret_type) | ||
post_mod = tvm.IRModule.from_expr(post_func) | ||
|
||
mid_body = suffix_cutter.mid_body | ||
if mid_body is None: | ||
# The suffix contains the entire function, meaning there was no | ||
# quantization boundary in the given mod. In this case, we use the | ||
# suffix mod as the middle mod and make the suffix an identity function. | ||
mid_mod = post_mod | ||
post_body = relay.Var('input', mid_mod['main'].ret_type) | ||
post_func = relay.Function( | ||
[post_body], | ||
post_body) | ||
post_mod = tvm.IRModule.from_expr(post_func) | ||
else: | ||
mid_func = relay.Function( | ||
func.params, | ||
mid_body) | ||
mid_mod = tvm.IRModule.from_expr(mid_func) | ||
|
||
return mid_mod, post_mod | ||
|
||
|
||
class ConversionOpChecker(ExprVisitor): | ||
"""A pass for checking that the visited function contains only conversion ops""" | ||
def __init__(self): | ||
ExprVisitor.__init__(self) | ||
self.valid = True | ||
|
||
def visit_call(self, call): | ||
if not hasattr(call.op, 'name') or call.op.name not in ALLOWED_CONVERSION_OPS: | ||
self.valid = False | ||
super().visit_call(call) | ||
|
||
|
||
def has_only_conversion_ops(func): | ||
"""Return true iff the given function contains only quantization/dequantization ops. | ||
Parameters | ||
---------- | ||
func : relay.Function | ||
Function being checked | ||
Returns | ||
------- | ||
valid : bool | ||
Whether the function contains only conversion ops | ||
""" | ||
checker = ConversionOpChecker() | ||
checker.visit(func) | ||
return checker.valid |
Oops, something went wrong.