Source code used for the paper "Self-supervised visual learning from interactions with objects" accepted at ECCV 2024.
For now, the paper is available on arxiv.
MVImgNet : Publicly available, please adapt dataloader
CO3D-v1 : Publicly available, please adapt dataloader
RT4K : Available there
Fork the repository:
git clone "PATH_TO_FORKED_REPOSITORY"
Set up the environment:
python3 -m venv ssltt
source ssltt/bin/activate
python3 -m pip install -r requirements.txt
RT4K examples in order: AA-SimCLR, SimCLR, SimCLR-TT, Ciper-SimCLR, EquiMod-SimCLR :
python3 train.py --data_root {RT4K_ROOT} --dataset RT4K --modules classic,action,linear_eval --contrast combined
python3 train.py --data_root {RT4K_ROOT} --dataset RT4K --modules classic,linear_eval --contrast classic
python3 train.py --data_root {RT4K_ROOT} --dataset RT4K --modules classic,linear_eval --contrast combined
python3 train.py --data_root {RT4K_ROOT} --dataset RT4K --modules classic,ciper,linear_eval --contrast combined
python3 train.py --data_root {RT4K_ROOT} --dataset RT4K --modules classic,equivariant,linear_eval --contrast combined
MVImgNet examples coming soon.
100-epochs MVImgNet-F pre-trained models are available there: https://huggingface.co/aaubret/AASSL/tree/main
@article{aubret2024self,
title={Self-supervised visual learning from interactions with objects},
author={Aubret, Arthur and Teuli{\`e}re, C{\'e}line and Triesch, Jochen},
journal={arXiv preprint arXiv:2407.06704},
year={2024}
}
This project is licensed under the MIT License - see the LICENSE file for details