Skip to content

Commit

Permalink
Revert "Support calling custom method names via MODULE_METHOD_NAME (f…
Browse files Browse the repository at this point in the history
…ixes triton-inference-server/server#5209) (#127)"

This reverts commit 7b63f0f.
tanmayv25 committed May 3, 2024

Verified

This commit was created on GitHub.com and signed with GitHub’s verified signature. The key has expired.
1 parent 7b63f0f commit 693973d
Showing 2 changed files with 7 additions and 72 deletions.
14 changes: 0 additions & 14 deletions README.md
Original file line number Diff line number Diff line change
@@ -217,20 +217,6 @@ key: "INTRA_OP_THREAD_COUNT"
}
```

* `MODULE_METHOD_NAME`:

String flag to specify which method on the PyTorch model is being called.
Default value is `forward`.

```
parameters: {
key: "MODULE_METHOD_NAME"
value: {
string_value:"custom_method"
}
}
```

* Additional Optimizations: Three additional boolean parameters are available to disable
certain Torch optimizations that can sometimes cause latency regressions in models with
complex execution modes and dynamic shapes. If not specified, all are enabled by default.
65 changes: 7 additions & 58 deletions src/libtorch.cc
Original file line number Diff line number Diff line change
@@ -61,8 +61,6 @@
// https://github.com/pytorch/pytorch/blob/v2.2.1-rc3/aten/src/ATen/Parallel.h#L133
#include <ATen/Parallel.h>

// Default forward method to call on PyTorch modules
const std::string DEFAULT_MODULE_METHOD_NAME = "forward";

//
// PyTorch C++ (LibTorch) Backend that implements the TRITONBACKEND API.
@@ -113,7 +111,6 @@ class ModelState : public BackendModel {
{
return model_outputs_;
}
const std::string& ModuleMethodName() { return module_method_name_; }

private:
ModelState(TRITONBACKEND_Model* triton_model);
@@ -156,10 +153,6 @@ class ModelState : public BackendModel {
// is specified both in the output section and state section, it indicates
// that the backend must return the output state to the client too.
std::map<std::string, std::pair<int64_t, int64_t>> model_outputs_;

// Method to call on PyTorch Module.
// Defaults to DEFAULT_MODULE_METHOD_NAME.
std::string module_method_name_;
};

TRITONSERVER_Error*
@@ -237,8 +230,7 @@ ModelState::ModelState(TRITONBACKEND_Model* triton_model)
enable_inference_mode_(true), enable_cache_cleaning_(false),
enable_weight_sharing_(false), enable_tensor_fuser_pair_({false, true}),
enable_jit_profiling_pair_({false, true}),
enable_jit_executor_pair_({false, true}),
module_method_name_(DEFAULT_MODULE_METHOD_NAME)
enable_jit_executor_pair_({false, true})
{
}

@@ -527,30 +519,6 @@ ModelState::ParseParameters()
.c_str());
}
}

// If 'MODULE_METHOD_NAME' is not present in 'parameters' then
// 'module_method_name_' is set to 'DEFAULT_MODULE_METHOD_NAME' ('forward').
std::string module_method_name = DEFAULT_MODULE_METHOD_NAME;
err = GetParameterValue(params, "MODULE_METHOD_NAME", &module_method_name);
if (err != nullptr) {
if (TRITONSERVER_ErrorCode(err) != TRITONSERVER_ERROR_NOT_FOUND) {
return err;
} else {
LOG_MESSAGE(
TRITONSERVER_LOG_INFO,
(std::string("module_method_name is not specified") +
" for model instance '" + Name() + "'")
.c_str());
TRITONSERVER_ErrorDelete(err);
}
} else {
module_method_name_ = module_method_name;
LOG_MESSAGE(
TRITONSERVER_LOG_INFO,
(std::string("module_method_name is ") + module_method_name_ +
" for model instance '" + Name() + "'")
.c_str());
}
}

return nullptr;
@@ -972,20 +940,7 @@ ModelInstanceState::ValidateInputs(const size_t expected_input_cnt)
// configuration specifies only those.
std::vector<std::string> allowed_inputs;

// First check if method exists in the model and throw an error if absent
const auto methodNameToExecute = model_state_->ModuleMethodName();
const auto optionalMethodHandle =
torch_model_->find_method(methodNameToExecute);
if (!optionalMethodHandle.has_value()) {
return TRITONSERVER_ErrorNew(
TRITONSERVER_ERROR_INVALID_ARG,
(std::string("unable to find method '") + methodNameToExecute +
"' in model '" + model_path_ + "'")
.c_str());
}

// Get the method schema and validate the inputs
const torch::jit::Method& method = optionalMethodHandle.value();
const torch::jit::Method& method = torch_model_->get_method("forward");
const auto& schema = method.function().getSchema();
const std::vector<c10::Argument>& arguments = schema.arguments();

@@ -1628,24 +1583,18 @@ ModelInstanceState::Execute(
torch::NoGradGuard no_grad;

// If input is a dictionary, prepare dictionary from 'input_tensors'.
std::string module_method_name = model_state_->ModuleMethodName();
std::vector<c10::IValue> inputs;
if (is_dict_input_) {
c10::Dict<std::string, at::Tensor> dict;
torch::Dict<std::string, torch::Tensor> input_dict;
for (auto& input_index : input_index_map_) {
torch::jit::IValue ival = (*input_tensors)[input_index.second];
dict.insert(input_index.first, ival.toTensor());
input_dict.insert(input_index.first, ival.toTensor());
}
inputs.push_back(dict);
std::vector<torch::jit::IValue> input_dict_ivalue = {input_dict};
model_outputs_ = torch_model_->forward(input_dict_ivalue);
} else {
for (auto& input_tensor : *input_tensors) {
inputs.push_back(input_tensor.toTensor());
}
model_outputs_ = torch_model_->forward(*input_tensors);
}

// Actually run the method on the model.
model_outputs_ = torch_model_->get_method(module_method_name)(inputs);

if (model_outputs_.isTuple()) {
auto model_outputs_tuple = model_outputs_.toTuple();
size_t op_index = 0;

0 comments on commit 693973d

Please sign in to comment.