Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ci: Upgrade OpenVINO model version to 2024.05.0 #7892

Closed
wants to merge 5 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 17 additions & 0 deletions qa/common/gen_common.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,10 +24,12 @@
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

import os
from typing import List

# Common utilities for model generation scripts
import numpy as np
import openvino as ov

np_dtype_string = np.dtype(object)

Expand Down Expand Up @@ -168,3 +170,18 @@ def np_to_torch_dtype(np_dtype):
elif np_dtype == np_dtype_string:
return List[str]
return None


def openvino_save_model(model_version_dir, model):
# W/A for error moving to OpenVINO new APIs "Attempt to get a name for a Tensor without names".
# For more details, check https://github.com/triton-inference-server/openvino_backend/issues/89
if len(model.outputs) == 0:
model.outputs[0].get_tensor().set_names({"OUTPUT"})
else:
for idx, out in enumerate(model.outputs):
out.get_tensor().set_names({f"OUTPUT{idx}"})

os.makedirs(model_version_dir, exist_ok=True)
ov.serialize(
model, model_version_dir + "/model.xml", model_version_dir + "/model.bin"
)
35 changes: 13 additions & 22 deletions qa/common/gen_qa_dyna_sequence_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,7 @@
np_to_tf_dtype,
np_to_torch_dtype,
np_to_trt_dtype,
openvino_save_model,
)

FLAGS = None
Expand Down Expand Up @@ -1292,28 +1293,19 @@ def create_openvino_modelfile(models_dir, model_version, max_batch, dtype, shape
)
model_version_dir = models_dir + "/" + model_name + "/" + str(model_version)

in0 = ng.parameter(shape=batch_dim + shape, dtype=dtype, name="INPUT")
start = ng.parameter(shape=batch_dim + shape, dtype=dtype, name="START")
end = ng.parameter(shape=batch_dim + shape, dtype=dtype, name="END")
ready = ng.parameter(shape=batch_dim + shape, dtype=dtype, name="READY")
corrid = ng.parameter(shape=batch_dim + shape, dtype=dtype, name="CORRID")
in0 = ov.opset1.parameter(shape=batch_dim + shape, dtype=dtype, name="INPUT")
start = ov.opset1.parameter(shape=batch_dim + shape, dtype=dtype, name="START")
end = ov.opset1.parameter(shape=batch_dim + shape, dtype=dtype, name="END")
ready = ov.opset1.parameter(shape=batch_dim + shape, dtype=dtype, name="READY")
corrid = ov.opset1.parameter(shape=batch_dim + shape, dtype=dtype, name="CORRID")

tmp1 = ng.add(in0, start)
tmp2 = ng.multiply(end, corrid)
tmp = ng.add(tmp1, tmp2)
op0 = ng.multiply(tmp, ready, name="OUTPUT")
tmp1 = ov.opset1.add(in0, start)
tmp2 = ov.opset1.multiply(end, corrid)
tmp = ov.opset1.add(tmp1, tmp2)
op0 = ov.opset1.multiply(tmp, ready, name="OUTPUT")

function = ng.impl.Function([op0], [in0, start, end, ready, corrid], model_name)
ie_network = IENetwork(ng.impl.Function.to_capsule(function))

try:
os.makedirs(model_version_dir)
except OSError as ex:
pass # ignore existing dir

ie_network.serialize(
model_version_dir + "/model.xml", model_version_dir + "/model.bin"
)
model = ov.Model([op0], [in0, start, end, ready, corrid], model_name)
openvino_save_model(model_version_dir, model)


def create_openvino_modelconfig(models_dir, model_version, max_batch, dtype, shape):
Expand Down Expand Up @@ -1560,8 +1552,7 @@ def create_models(models_dir, dtype, shape, no_batch=True):
import torch
from torch import nn
if FLAGS.openvino:
from openvino.inference_engine import IENetwork
import ngraph as ng
import openvino.runtime as ov

import test_util as tu

Expand Down
20 changes: 8 additions & 12 deletions qa/common/gen_qa_identity_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@
np_to_onnx_dtype,
np_to_tf_dtype,
np_to_trt_dtype,
openvino_save_model,
)

FLAGS = None
Expand Down Expand Up @@ -574,18 +575,14 @@ def create_openvino_modelfile(
in_name = "INPUT{}".format(io_num)
out_name = "OUTPUT{}".format(io_num)
openvino_inputs.append(
ng.parameter(shape=batch_dim + shape, dtype=dtype, name=in_name)
ov.opset1.parameter(shape=batch_dim + shape, dtype=dtype, name=in_name)
)
openvino_outputs.append(
ov.opset1.result(openvino_inputs[io_num], name=out_name)
)
openvino_outputs.append(ng.result(openvino_inputs[io_num], name=out_name))

function = ng.impl.Function(openvino_outputs, openvino_inputs, model_name)
ie_network = IENetwork(ng.impl.Function.to_capsule(function))

os.makedirs(model_version_dir, exist_ok=True)

ie_network.serialize(
model_version_dir + "/model.xml", model_version_dir + "/model.bin"
)
model = ov.Model(openvino_outputs, openvino_inputs, model_name)
openvino_save_model(model_version_dir, model)


def create_openvino_modelconfig(
Expand Down Expand Up @@ -1317,8 +1314,7 @@ def create_models(models_dir, dtype, shape, io_cnt=1, no_batch=True):
):
import tensorrt as trt
if FLAGS.openvino:
from openvino.inference_engine import IENetwork
import ngraph as ng
import openvino.runtime as ov

import test_util as tu

Expand Down
2 changes: 1 addition & 1 deletion qa/common/gen_qa_model_repository
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@ ONNX_VERSION=1.16.1
ONNX_OPSET=0

# OPENVINO version
OPENVINO_VERSION=2023.3.0
OPENVINO_VERSION=2024.5.0

UBUNTU_IMAGE=${UBUNTU_IMAGE:=ubuntu:22.04}
PYTORCH_IMAGE=${PYTORCH_IMAGE:=nvcr.io/nvidia/pytorch:$TRITON_VERSION-py3}
Expand Down
37 changes: 16 additions & 21 deletions qa/common/gen_qa_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,7 @@
np_to_tf_dtype,
np_to_torch_dtype,
np_to_trt_dtype,
openvino_save_model,
)

FLAGS = None
Expand Down Expand Up @@ -1809,29 +1810,24 @@ def create_openvino_modelfile(
)
model_version_dir = models_dir + "/" + model_name + "/" + str(model_version)

in0 = ng.parameter(shape=batch_dim + input_shape, dtype=input_dtype, name="INPUT0")
in1 = ng.parameter(shape=batch_dim + input_shape, dtype=input_dtype, name="INPUT1")

r0 = ng.add(in0, in1) if not swap else ng.subtract(in0, in1)
r1 = ng.subtract(in0, in1) if not swap else ng.add(in0, in1)
in0 = ov.opset1.parameter(
shape=batch_dim + input_shape, dtype=input_dtype, name="INPUT0"
)
in1 = ov.opset1.parameter(
shape=batch_dim + input_shape, dtype=input_dtype, name="INPUT1"
)

result0 = ng.reshape(r0, batch_dim + output0_shape, special_zero=False)
result1 = ng.reshape(r1, batch_dim + output1_shape, special_zero=False)
r0 = ov.opset1.add(in0, in1) if not swap else ov.opset1.subtract(in0, in1)
r1 = ov.opset1.subtract(in0, in1) if not swap else ov.opset1.add(in0, in1)

op0 = ng.convert(result0, destination_type=output0_dtype, name="OUTPUT0")
op1 = ng.convert(result1, destination_type=output1_dtype, name="OUTPUT1")
result0 = ov.opset1.reshape(r0, batch_dim + output0_shape, special_zero=False)
result1 = ov.opset1.reshape(r1, batch_dim + output1_shape, special_zero=False)

function = ng.impl.Function([op0, op1], [in0, in1], model_name)
ie_network = IENetwork(ng.impl.Function.to_capsule(function))
op0 = ov.opset1.convert(result0, destination_type=output0_dtype, name="OUTPUT0")
op1 = ov.opset1.convert(result1, destination_type=output1_dtype, name="OUTPUT1")

try:
os.makedirs(model_version_dir)
except OSError as ex:
pass # ignore existing dir

ie_network.serialize(
model_version_dir + "/model.xml", model_version_dir + "/model.bin"
)
model = ov.Model([op0, op1], [in0, in1], model_name)
openvino_save_model(model_version_dir, model)


def create_openvino_modelconfig(
Expand Down Expand Up @@ -2486,8 +2482,7 @@ def create_fixed_models(
import torch
from torch import nn
if FLAGS.openvino:
from openvino.inference_engine import IENetwork
import ngraph as ng
import openvino.runtime as ov

import test_util as tu

Expand Down
21 changes: 6 additions & 15 deletions qa/common/gen_qa_reshape_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,7 @@
np_to_tf_dtype,
np_to_torch_dtype,
np_to_trt_dtype,
openvino_save_model,
)

FLAGS = None
Expand Down Expand Up @@ -934,31 +935,22 @@ def create_openvino_modelfile(
in_name = "INPUT{}".format(io_num)
out_name = "OUTPUT{}".format(io_num)
openvino_inputs.append(
ng.parameter(
ov.opset1.parameter(
shape=batch_dim + input_shapes[io_num], dtype=dtype, name=in_name
)
)

openvino_outputs.append(
ng.reshape(
ov.opset1.reshape(
openvino_inputs[io_num],
batch_dim + output_shapes[io_num],
name=out_name,
special_zero=False,
)
)

function = ng.impl.Function(openvino_outputs, openvino_inputs, model_name)
ie_network = IENetwork(ng.impl.Function.to_capsule(function))

try:
os.makedirs(model_version_dir)
except OSError as ex:
pass # ignore existing dir

ie_network.serialize(
model_version_dir + "/model.xml", model_version_dir + "/model.bin"
)
model = ov.Model(openvino_outputs, openvino_inputs, model_name)
openvino_save_model(model_version_dir, model)


def create_openvino_modelconfig(
Expand Down Expand Up @@ -1463,8 +1455,7 @@ def create_openvino_models(
import torch
from torch import nn
if FLAGS.openvino:
from openvino.inference_engine import IENetwork
import ngraph as ng
import openvino.runtime as ov

import test_util as tu

Expand Down
27 changes: 9 additions & 18 deletions qa/common/gen_qa_sequence_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@
np_to_tf_dtype,
np_to_torch_dtype,
np_to_trt_dtype,
openvino_save_model,
)

FLAGS = None
Expand Down Expand Up @@ -1145,24 +1146,15 @@ def create_openvino_modelfile(models_dir, model_version, max_batch, dtype, shape
)
model_version_dir = models_dir + "/" + model_name + "/" + str(model_version)

in0 = ng.parameter(shape=batch_dim + shape, dtype=dtype, name="INPUT")
start = ng.parameter(shape=batch_dim + shape, dtype=dtype, name="START")
ready = ng.parameter(shape=batch_dim + shape, dtype=dtype, name="READY")
in0 = ov.opset1.parameter(shape=batch_dim + shape, dtype=dtype, name="INPUT")
start = ov.opset1.parameter(shape=batch_dim + shape, dtype=dtype, name="START")
ready = ov.opset1.parameter(shape=batch_dim + shape, dtype=dtype, name="READY")

tmp = ng.add(in0, start)
op0 = ng.multiply(tmp, ready, name="OUTPUT")
tmp = ov.opset1.add(in0, start)
op0 = ov.opset1.multiply(tmp, ready, name="OUTPUT")

function = ng.impl.Function([op0], [in0, start, ready], model_name)
ie_network = IENetwork(ng.impl.Function.to_capsule(function))

try:
os.makedirs(model_version_dir)
except OSError as ex:
pass # ignore existing dir

ie_network.serialize(
model_version_dir + "/model.xml", model_version_dir + "/model.bin"
)
model = ov.Model([op0], [in0, start, ready], model_name)
openvino_save_model(model_version_dir, model)


def create_openvino_modelconfig(models_dir, model_version, max_batch, dtype, shape):
Expand Down Expand Up @@ -1421,8 +1413,7 @@ def create_models(models_dir, dtype, shape, no_batch=True):
import torch
from torch import nn
if FLAGS.openvino:
from openvino.inference_engine import IENetwork
import ngraph as ng
import openvino.runtime as ov

import test_util as tu

Expand Down
Loading