Skip to content

Commit

Permalink
[AMD][Pipeliner] Improve clustering and add prefetch (#4881)
Browse files Browse the repository at this point in the history
This commit improves pipeliner op clustering so that
we can avoid relying complicated and fragile reordering
step later. In order to do this, we formalized stages a bit
and improved documentation accordingly.

Also this commit adds an extra experimental stage
to buffer in registers before compute, which is a part
of a series of commits to improve scheduling perf.
  • Loading branch information
sjw36 authored Nov 12, 2024
1 parent 462de12 commit cc25374
Show file tree
Hide file tree
Showing 10 changed files with 548 additions and 646 deletions.
345 changes: 0 additions & 345 deletions test/TritonGPU/amd/amd-reorder-instructions.mlir

Large diffs are not rendered by default.

32 changes: 16 additions & 16 deletions test/TritonGPU/amd/amd-sched-2nd-load.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -35,11 +35,11 @@ module attributes {"triton_gpu.num-warps" = 1 : i32, "triton_gpu.threads-per-war
%c1 = arith.constant 1 : i32
%cst = arith.constant dense<0.000000e+00> : tensor<256x256xf32, #mma>
%0:1 = scf.for %arg0 = %c0 to %c1 step %c1 iter_args(%arg1 = %cst) -> (tensor<256x256xf32, #mma>) : i32 {
%4 = tt.load %A_ptr : tensor<256x128x!tt.ptr<f16>, #blocked>
%1 = triton_gpu.local_load %A_LDS : !tt.memdesc<256x128xf16, #shared, #triton_gpu.shared_memory, mutable> -> tensor<256x128xf16, #dotOp0>
%5 = tt.load %B_ptr : tensor<128x256x!tt.ptr<f16>, #blocked1>
%2 = triton_gpu.local_load %B_LDS : !tt.memdesc<128x256xf16, #shared1, #triton_gpu.shared_memory, mutable> -> tensor<128x256xf16, #dotOp1>
%3 = tt.dot %1, %2, %arg1 : tensor<256x128xf16, #dotOp0> * tensor<128x256xf16, #dotOp1> -> tensor<256x256xf32, #mma>
%4 = tt.load %A_ptr : tensor<256x128x!tt.ptr<f16>, #blocked>
%5 = tt.load %B_ptr : tensor<128x256x!tt.ptr<f16>, #blocked1>
triton_gpu.local_store %4, %A_LDS : tensor<256x128xf16, #blocked> -> !tt.memdesc<256x128xf16, #shared, #triton_gpu.shared_memory, mutable>
triton_gpu.local_store %5, %B_LDS : tensor<128x256xf16, #blocked1> -> !tt.memdesc<128x256xf16, #shared1, #triton_gpu.shared_memory, mutable>
scf.yield %3 : tensor<256x256xf32, #mma>
Expand All @@ -64,11 +64,11 @@ module attributes {"triton_gpu.num-warps" = 1 : i32, "triton_gpu.threads-per-war
%c1 = arith.constant 1 : i32
%cst = arith.constant dense<0.000000e+00> : tensor<256x256xf32, #mma>
%0:1 = scf.for %arg0 = %c0 to %c1 step %c1 iter_args(%arg1 = %cst) -> (tensor<256x256xf32, #mma>) : i32 {
%4 = tt.load %A_ptr : tensor<256x64x!tt.ptr<f16>, #blocked>
%1 = triton_gpu.local_load %A_LDS : !tt.memdesc<256x64xf16, #shared, #triton_gpu.shared_memory, mutable> -> tensor<256x64xf16, #dotOp0>
%5 = tt.load %B_ptr : tensor<64x256x!tt.ptr<f16>, #blocked1>
%2 = triton_gpu.local_load %B_LDS : !tt.memdesc<64x256xf16, #shared1, #triton_gpu.shared_memory, mutable> -> tensor<64x256xf16, #dotOp1>
%3 = tt.dot %1, %2, %arg1 : tensor<256x64xf16, #dotOp0> * tensor<64x256xf16, #dotOp1> -> tensor<256x256xf32, #mma>
%4 = tt.load %A_ptr : tensor<256x64x!tt.ptr<f16>, #blocked>
%5 = tt.load %B_ptr : tensor<64x256x!tt.ptr<f16>, #blocked1>
triton_gpu.local_store %4, %A_LDS : tensor<256x64xf16, #blocked> -> !tt.memdesc<256x64xf16, #shared, #triton_gpu.shared_memory, mutable>
triton_gpu.local_store %5, %B_LDS : tensor<64x256xf16, #blocked1> -> !tt.memdesc<64x256xf16, #shared1, #triton_gpu.shared_memory, mutable>
scf.yield %3 : tensor<256x256xf32, #mma>
Expand All @@ -81,8 +81,8 @@ module attributes {"triton_gpu.num-warps" = 1 : i32, "triton_gpu.threads-per-war
// Should NOT apply: tile size 256x64x128 with single dot
// CHECK-LABEL: sink_2nd_load_256x64x128
// CHECK: %[[tileA:.*]] = tt.load
// CHECK-NEXT: %[[tileB:.*]] = tt.load
// CHECK-NEXT: local_load
// CHECK-NEXT: %[[tileB:.*]] = tt.load
// CHECK-NEXT: local_load
// CHECK-NEXT: tt.dot
// CHECK-NEXT: triton_gpu.local_store %[[tileA]]
Expand All @@ -93,11 +93,11 @@ module attributes {"triton_gpu.num-warps" = 1 : i32, "triton_gpu.threads-per-war
%c1 = arith.constant 1 : i32
%cst = arith.constant dense<0.000000e+00> : tensor<256x64xf32, #mma>
%0:1 = scf.for %arg0 = %c0 to %c1 step %c1 iter_args(%arg1 = %cst) -> (tensor<256x64xf32, #mma>) : i32 {
%4 = tt.load %A_ptr : tensor<256x128x!tt.ptr<f16>, #blocked>
%1 = triton_gpu.local_load %A_LDS : !tt.memdesc<256x128xf16, #shared, #triton_gpu.shared_memory, mutable> -> tensor<256x128xf16, #dotOp0>
%5 = tt.load %B_ptr : tensor<128x64x!tt.ptr<f16>, #blocked1>
%2 = triton_gpu.local_load %B_LDS : !tt.memdesc<128x64xf16, #shared1, #triton_gpu.shared_memory, mutable> -> tensor<128x64xf16, #dotOp1>
%3 = tt.dot %1, %2, %arg1 : tensor<256x128xf16, #dotOp0> * tensor<128x64xf16, #dotOp1> -> tensor<256x64xf32, #mma>
%4 = tt.load %A_ptr : tensor<256x128x!tt.ptr<f16>, #blocked>
%5 = tt.load %B_ptr : tensor<128x64x!tt.ptr<f16>, #blocked1>
triton_gpu.local_store %4, %A_LDS : tensor<256x128xf16, #blocked> -> !tt.memdesc<256x128xf16, #shared, #triton_gpu.shared_memory, mutable>
triton_gpu.local_store %5, %B_LDS : tensor<128x64xf16, #blocked1> -> !tt.memdesc<128x64xf16, #shared1, #triton_gpu.shared_memory, mutable>
scf.yield %3 : tensor<256x64xf32, #mma>
Expand All @@ -110,8 +110,8 @@ module attributes {"triton_gpu.num-warps" = 1 : i32, "triton_gpu.threads-per-war
// Should NOT apply: tile size 256x256x32 with single dot
// CHECK-LABEL: sink_2nd_load_256x256x32
// CHECK: %[[tileA:.*]] = tt.load
// CHECK-NEXT: %[[tileB:.*]] = tt.load
// CHECK-NEXT: local_load
// CHECK-NEXT: %[[tileB:.*]] = tt.load
// CHECK-NEXT: local_load
// CHECK-NEXT: tt.dot
// CHECK-NEXT: triton_gpu.local_store %[[tileA]]
Expand All @@ -122,11 +122,11 @@ module attributes {"triton_gpu.num-warps" = 1 : i32, "triton_gpu.threads-per-war
%c1 = arith.constant 1 : i32
%cst = arith.constant dense<0.000000e+00> : tensor<256x256xf32, #mma>
%0:1 = scf.for %arg0 = %c0 to %c1 step %c1 iter_args(%arg1 = %cst) -> (tensor<256x256xf32, #mma>) : i32 {
%4 = tt.load %A_ptr : tensor<256x32x!tt.ptr<f16>, #blocked>
%1 = triton_gpu.local_load %A_LDS : !tt.memdesc<256x32xf16, #shared, #triton_gpu.shared_memory, mutable> -> tensor<256x32xf16, #dotOp0>
%5 = tt.load %B_ptr : tensor<32x256x!tt.ptr<f16>, #blocked1>
%2 = triton_gpu.local_load %B_LDS : !tt.memdesc<32x256xf16, #shared1, #triton_gpu.shared_memory, mutable> -> tensor<32x256xf16, #dotOp1>
%3 = tt.dot %1, %2, %arg1 : tensor<256x32xf16, #dotOp0> * tensor<32x256xf16, #dotOp1> -> tensor<256x256xf32, #mma>
%4 = tt.load %A_ptr : tensor<256x32x!tt.ptr<f16>, #blocked>
%5 = tt.load %B_ptr : tensor<32x256x!tt.ptr<f16>, #blocked1>
triton_gpu.local_store %4, %A_LDS : tensor<256x32xf16, #blocked> -> !tt.memdesc<256x32xf16, #shared, #triton_gpu.shared_memory, mutable>
triton_gpu.local_store %5, %B_LDS : tensor<32x256xf16, #blocked1> -> !tt.memdesc<32x256xf16, #shared1, #triton_gpu.shared_memory, mutable>
scf.yield %3 : tensor<256x256xf32, #mma>
Expand All @@ -142,8 +142,8 @@ module attributes {"triton_gpu.num-warps" = 1 : i32, "triton_gpu.threads-per-war
// Should NOT apply: the 2nd load has a user before the dot
// CHECK-LABEL: sink_2nd_load_128x128x128_user_before_dot
// CHECK: %[[tileA:.*]] = tt.load
// CHECK-NEXT: %[[tileB:.*]] = tt.load
// CHECK-NEXT: local_load
// CHECK-NEXT: %[[tileB:.*]] = tt.load
// CHECK-NEXT: local_load
// CHECK-NEXT: tt.store
// CHECK-NEXT: tt.dot
Expand All @@ -154,10 +154,10 @@ module attributes {"triton_gpu.num-warps" = 1 : i32, "triton_gpu.threads-per-war
%c1 = arith.constant 1 : i32
%cst = arith.constant dense<0.000000e+00> : tensor<128x128xf32, #mma>
%0:1 = scf.for %arg0 = %c0 to %c1 step %c1 iter_args(%arg1 = %cst) -> (tensor<128x128xf32, #mma>) : i32 {
%1 = triton_gpu.local_load %A_LDS : !tt.memdesc<128x128xf16, #shared, #triton_gpu.shared_memory, mutable> -> tensor<128x128xf16, #dotOp0>
%2 = triton_gpu.local_load %B_LDS : !tt.memdesc<128x128xf16, #shared1, #triton_gpu.shared_memory, mutable> -> tensor<128x128xf16, #dotOp1>
%4 = tt.load %A_ptr : tensor<128x128x!tt.ptr<f16>, #blocked>
%1 = triton_gpu.local_load %A_LDS : !tt.memdesc<128x128xf16, #shared, #triton_gpu.shared_memory, mutable> -> tensor<128x128xf16, #dotOp0>
%5 = tt.load %B_ptr : tensor<128x128x!tt.ptr<i64>, #blocked>
%2 = triton_gpu.local_load %B_LDS : !tt.memdesc<128x128xf16, #shared1, #triton_gpu.shared_memory, mutable> -> tensor<128x128xf16, #dotOp1>
tt.store %B_ptr, %5 : tensor<128x128x!tt.ptr<i64>, #blocked>
%3 = tt.dot %1, %2, %arg1 : tensor<128x128xf16, #dotOp0> * tensor<128x128xf16, #dotOp1> -> tensor<128x128xf32, #mma>
triton_gpu.local_store %4, %A_LDS : tensor<128x128xf16, #blocked> -> !tt.memdesc<128x128xf16, #shared, #triton_gpu.shared_memory, mutable>
Expand All @@ -174,12 +174,12 @@ module attributes {"triton_gpu.num-warps" = 1 : i32, "triton_gpu.threads-per-war
// Category 3: two dots in the for loop. Make sure the optimization is not applied
// should NOT apply: two dots
// CHECK-LABEL: sink_2nd_load_256x256x64_two_dot
// CHECK: triton_gpu.local_load
// CHECK: tt.load
// CHECK-NEXT: tt.load
// CHECK-NEXT: triton_gpu.local_load
// CHECK-NEXT: triton_gpu.local_load
// CHECK-NEXT: tt.dot
// CHECK-NEXT: tt.dot
// CHECK-NEXT: tt.load
// CHECK-NEXT: tt.load
// CHECK-NEXT: triton_gpu.local_store
// CHECK-NEXT: triton_gpu.local_store
#blocked = #triton_gpu.blocked<{sizePerThread = [1, 8], threadsPerWarp = [8, 8], warpsPerCTA = [1, 1], order = [1, 0]}>
Expand Down
4 changes: 2 additions & 2 deletions test/TritonGPU/loop-pipeline-hip.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -35,9 +35,9 @@ module attributes {"triton_gpu.target" = "hip:gfx942", "triton_gpu.num-ctas" = 1
%16 = tt.addptr %14, %15 : tensor<64x16x!tt.ptr<f16>, #blocked>, tensor<64x16xi32, #blocked>
// CHECK: triton_gpu.local_store
// CHECK: scf.for
// CHECK: tt.load
// CHECK: tt.dot
// CHECK: tt.dot
// CHECK: tt.load
// CHECK: triton_gpu.local_store
// CHECK: scf.yield
%17:2 = scf.for %arg2 = %c0_i32 to %c8_i32 step %c1_i32 iter_args(%arg3 = %cst_1, %arg4 = %cst_2) -> (tensor<128x16xf32, #mma>, tensor<128x64xf32, #mma>) : i32 {
Expand Down Expand Up @@ -165,9 +165,9 @@ module attributes {"triton_gpu.target" = "hip:gfx942", "triton_gpu.num-ctas" = 1
// CHECK-LABEL: tt.func public @add_barrier_kernel
// CHECK: tt.load
// CHECK: scf.for
// CHECK: tt.load
// CHECK: gpu.barrier
// CHECK: tt.store
// CHECK: tt.load
// CHECK: scf.yield
// CHECK: gpu.barrier
// CHECK: tt.store
Expand Down
Loading

0 comments on commit cc25374

Please sign in to comment.