-
Notifications
You must be signed in to change notification settings - Fork 2.4k
Description
During the process of distributed training, I encountered the following problem when compiling Triton kernels:
Traceback (most recent call last):
......
File "/mnt/petrelfs/caoweihan/anaconda3/envs/deepspeed/lib/python3.10/site-packages/triton/compiler/compiler.py", line 482, in compile
metadata_group[ir_filename] = fn_cache_manager.put(next_module, ir_filename)
File "/mnt/petrelfs/caoweihan/anaconda3/envs/deepspeed/lib/python3.10/site-packages/triton/runtime/cache.py", line 109, in put
os.replace(temp_path, filepath)
FileNotFoundError: [Errno 2] No such file or directory: '/mnt/petrelfs/caoweihan/.triton/cache/cff628804055ab05f902072733c9ab2d/_rms_norm_bwd_dx_fused.ttir.tmp.pid_15735_304289' -> '/mnt/petrelfs/caoweihan/.triton/cache/cff628804055ab05f902072733c9ab2d/_rms_norm_bwd_dx_fused.ttir'
The above error only occurs during distributed training (multi-process), and both '/mnt/petrelfs/caoweihan/.triton/cache/cff628804055ab05f902072733c9ab2d/_rms_norm_bwd_dx_fused.ttir.tmp.pid_15735_304289' and '/mnt/petrelfs/caoweihan/.triton/cache/cff628804055ab05f902072733c9ab2d/_rms_norm_bwd_dx_fused.ttir' files do exist.
Given that the intermediate results across different processes are identical, I attempted to replace:
# copy from https://github.com/openai/triton/blob/main/python/triton/runtime/cache.py#L129
os.replace(temp_path, filepath)with:
try:
os.replace(temp_path, filepath)
except:
passThis tweak squashed the error, but it's not cool.
I would appreciate if anyone could explain why this issue arises. After all, os.replace(temp_path, filepath) should be playing nice as an atomic operation.
Here is my system environment:
sys.platform: linux
Python: 3.10.13 (main, Sep 11 2023, 13:44:35) [GCC 11.2.0]
CUDA available: True
numpy_random_seed: 250149167
GPU 0,1,2,3,4,5,6,7: NVIDIA A800-SXM4-80GB
CUDA_HOME: /mnt/petrelfs/share/cuda-11.7
NVCC: Cuda compilation tools, release 11.7, V11.7.99
GCC: gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-44)
PyTorch: 2.1.0+cu121
PyTorch compiling details: PyTorch built with:
- GCC 9.3
- C++ Version: 201703
- Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v3.1.1 (Git Hash 64f6bcbcbab628e96f33a62c3e975f8535a7bde4)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- LAPACK is enabled (usually provided by MKL)
- NNPACK is enabled
- CPU capability usage: AVX512
- CUDA Runtime 12.1
- NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
- CuDNN 8.9.2
- Magma 2.6.1
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=12.1, CUDNN_VERSION=8.9.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-invalid-partial-specialization -Wno-unused-private-field -Wno-aligned-allocation-unavailable -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.1.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
TorchVision: 0.16.0+cu121
OpenCV: 4.8.1