Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

question about the predictor machanism #5

Closed
listenlink opened this issue Jul 15, 2016 · 5 comments
Closed

question about the predictor machanism #5

listenlink opened this issue Jul 15, 2016 · 5 comments
Labels

Comments

@listenlink
Copy link

Hi @ptillet ,

I want to add kernels on isaac library, but have some doubt about the implementation of the tuning machanism:

1)  there are some json file in the database folder, how do you generate them, and how can i modify them to fit the new kernels?
2)  what is the mechanism about the predictor and its relationship among expression_tree, random forest, feature, threashold and values, how can I use this mechanism?

Looking forward for your replay, thx!

@ptillet
Copy link
Collaborator

ptillet commented Jul 20, 2016

Hi :)

The .json file contains the predictor (random forest) to pick the right kernel template to choose given the input shapes. The predictor is trained in $PROJECT_ROOT_DIR/tune/, and serialized into a .json file (to make sure that ISAAC doesn't depend on Python.).

What kind of kernel are you trying to add?

@listenlink
Copy link
Author

listenlink commented Jul 22, 2016

Thanks for your reply. currently we have some fine-tuned kernel of GEMV/GEMM for Intel's graphics, the kernels have some issues:

  1. they may not suitable for all the GEMV/GEMM parameters.
  2. the other is that they may not have good performance for non-Intel platform.
    what is your opinion about the good solution that integrated these kernels into ISAAC?
    add @gongzg into discussion

@ptillet
Copy link
Collaborator

ptillet commented Jul 24, 2016

Oh, yes. I've talked briefly to @gongzg about that. For now I just know that the kernels used intel subgroups extension, which is fine. I have a few questions, so that I can think about integrating them:

Does it work for all sizes of M, N, K (i.e., handles bounds-checking properly) without calling additional "cleanup" kernels?
Does it work for the 4 layouts (NN, NT, TN, TT)?
What are the tunable parameters (how many?). In the current GEMM generator, one parameter ("Depth") is pretty useful for handling "small M, N ; large K" situations. And I'll add another one. We can talk about adding them into your kernel template, if they're not already there.

@listenlink
Copy link
Author

Hi,
Currently our kernels support al the sizes of M, N, K, but will bring cleanup kernels.
And just work for RowMajor layout currently.
Don't have tunable parameters, but have some different kernels for different usage situation.

@ptillet
Copy link
Collaborator

ptillet commented Jul 30, 2016

That could be interesting :) Is there any place where I can see and/or benchmark the code?

@ptillet ptillet closed this as completed Sep 14, 2016
ptillet pushed a commit that referenced this issue Feb 8, 2017
fp16 blas implementation patch
goostavz pushed a commit to goostavz/triton that referenced this issue Aug 4, 2023
…handling. (triton-lang#5)

Started a TODO.md file to keep track of the tasks to do before merging.
ThomasRaoux pushed a commit that referenced this issue Mar 13, 2024
There are two tests that failed under AddressSanitizer:
* test/TritonGPU/loop-pipeline.mlir
* python/test/regression/test_functional_regressions.py

with an error: 

```
==8475==ERROR: AddressSanitizer: heap-use-after-free on address 0x50c000bd0be0 at pc 0x557b03278847 bp 0x7ffd69b2c4a0 sp 0x7ffd69b2c498
READ of size 8 at 0x50c000bd0be0 thread T0
    #0 0x557b03278846 in getNextOperandUsingThisValue [third_party/llvm/llvm-project/mlir/include/mlir/IR/UseDefLists.h:43](https://cs.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/mlir/include/mlir/IR/UseDefLists.h?l=43&ws=aliia/3018&snapshot=215):58
    #1 0x557b03278846 in operator++ [third_party/llvm/llvm-project/mlir/include/mlir/IR/UseDefLists.h:322](https://cs.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/mlir/include/mlir/IR/UseDefLists.h?l=322&ws=aliia/3018&snapshot=215):39
    #2 0x557b03278846 in mlir::ResultRange::UseIterator::operator++() [third_party/llvm/llvm-project/mlir/lib/IR/OperationSupport.cpp:614](https://cs.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/mlir/lib/IR/OperationSupport.cpp?l=614&ws=aliia/3018&snapshot=215):5
    #3 0x557affde38c4 in operator++ [third_party/llvm/llvm-project/llvm/include/llvm/ADT/iterator.h:281](https://cs.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/llvm/include/llvm/ADT/iterator.h?l=281&ws=aliia/3018&snapshot=215):5
    #4 0x557affde38c4 in createAsyncCopy [third_party/triton/lib/Dialect/TritonGPU/Transforms/Pipeliner/MatmulLoopPipeline.cpp:117](https://cs.corp.google.com/piper///depot/google3/third_party/triton/lib/Dialect/TritonGPU/Transforms/Pipeliner/MatmulLoopPipeline.cpp?l=117&ws=aliia/3018&snapshot=215):26
    #5 0x557affde38c4 in createAsyncLoad [third_party/triton/lib/Dialect/TritonGPU/Transforms/Pipeliner/MatmulLoopPipeline.cpp:135](https://cs.corp.google.com/piper///depot/google3/third_party/triton/lib/Dialect/TritonGPU/Transforms/Pipeliner/MatmulLoopPipeline.cpp?l=135&ws=aliia/3018&snapshot=215):3
    #6 0x557affde38c4 in createAsynOps [third_party/triton/lib/Dialect/TritonGPU/Transforms/Pipeliner/MatmulLoopPipeline.cpp:501](https://cs.corp.google.com/piper///depot/google3/third_party/triton/lib/Dialect/TritonGPU/Transforms/Pipeliner/MatmulLoopPipeline.cpp?l=501&ws=aliia/3018&snapshot=215):5
    #7 0x557affde38c4 in mlir::triton::preProcessLoopAndGetSchedule(mlir::scf::ForOp&, int, mlir::triton::PipeliningOption&) [third_party/triton/lib/Dialect/TritonGPU/Transforms/Pipeliner/MatmulLoopPipeline.cpp:740](https://cs.corp.google.com/piper///depot/google3/third_party/triton/lib/Dialect/TritonGPU/Transforms/Pipeliner/MatmulLoopPipeline.cpp?l=740&ws=aliia/3018&snapshot=215):7
    #8 0x557affe01c0c in pipelineLoop [third_party/triton/lib/Dialect/TritonGPU/Transforms/Pipeliner/SoftwarePipeliner.cpp:76](https://cs.corp.google.com/piper///depot/google3/third_party/triton/lib/Dialect/TritonGPU/Transforms/Pipeliner/SoftwarePipeliner.cpp?l=76&ws=aliia/3018&snapshot=215):19
...
```
This is likely happening due to iterator being invalidated after
`alloc.erase()`.
This PR moves erases of allocations outside of a loop and fixes
heap-use-after-free issue.

Do you know if there is an easy way to run the tests under sanitizers
upstream? It would be handy if we can automate it, so we catch this kind
of errors early on.
htyu pushed a commit to htyu/triton that referenced this issue Mar 20, 2024
There are two tests that failed under AddressSanitizer:
* test/TritonGPU/loop-pipeline.mlir
* python/test/regression/test_functional_regressions.py

with an error: 

```
==8475==ERROR: AddressSanitizer: heap-use-after-free on address 0x50c000bd0be0 at pc 0x557b03278847 bp 0x7ffd69b2c4a0 sp 0x7ffd69b2c498
READ of size 8 at 0x50c000bd0be0 thread T0
    #0 0x557b03278846 in getNextOperandUsingThisValue [third_party/llvm/llvm-project/mlir/include/mlir/IR/UseDefLists.h:43](https://cs.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/mlir/include/mlir/IR/UseDefLists.h?l=43&ws=aliia/3018&snapshot=215):58
    triton-lang#1 0x557b03278846 in operator++ [third_party/llvm/llvm-project/mlir/include/mlir/IR/UseDefLists.h:322](https://cs.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/mlir/include/mlir/IR/UseDefLists.h?l=322&ws=aliia/3018&snapshot=215):39
    triton-lang#2 0x557b03278846 in mlir::ResultRange::UseIterator::operator++() [third_party/llvm/llvm-project/mlir/lib/IR/OperationSupport.cpp:614](https://cs.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/mlir/lib/IR/OperationSupport.cpp?l=614&ws=aliia/3018&snapshot=215):5
    triton-lang#3 0x557affde38c4 in operator++ [third_party/llvm/llvm-project/llvm/include/llvm/ADT/iterator.h:281](https://cs.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/llvm/include/llvm/ADT/iterator.h?l=281&ws=aliia/3018&snapshot=215):5
    triton-lang#4 0x557affde38c4 in createAsyncCopy [third_party/triton/lib/Dialect/TritonGPU/Transforms/Pipeliner/MatmulLoopPipeline.cpp:117](https://cs.corp.google.com/piper///depot/google3/third_party/triton/lib/Dialect/TritonGPU/Transforms/Pipeliner/MatmulLoopPipeline.cpp?l=117&ws=aliia/3018&snapshot=215):26
    triton-lang#5 0x557affde38c4 in createAsyncLoad [third_party/triton/lib/Dialect/TritonGPU/Transforms/Pipeliner/MatmulLoopPipeline.cpp:135](https://cs.corp.google.com/piper///depot/google3/third_party/triton/lib/Dialect/TritonGPU/Transforms/Pipeliner/MatmulLoopPipeline.cpp?l=135&ws=aliia/3018&snapshot=215):3
    triton-lang#6 0x557affde38c4 in createAsynOps [third_party/triton/lib/Dialect/TritonGPU/Transforms/Pipeliner/MatmulLoopPipeline.cpp:501](https://cs.corp.google.com/piper///depot/google3/third_party/triton/lib/Dialect/TritonGPU/Transforms/Pipeliner/MatmulLoopPipeline.cpp?l=501&ws=aliia/3018&snapshot=215):5
    triton-lang#7 0x557affde38c4 in mlir::triton::preProcessLoopAndGetSchedule(mlir::scf::ForOp&, int, mlir::triton::PipeliningOption&) [third_party/triton/lib/Dialect/TritonGPU/Transforms/Pipeliner/MatmulLoopPipeline.cpp:740](https://cs.corp.google.com/piper///depot/google3/third_party/triton/lib/Dialect/TritonGPU/Transforms/Pipeliner/MatmulLoopPipeline.cpp?l=740&ws=aliia/3018&snapshot=215):7
    triton-lang#8 0x557affe01c0c in pipelineLoop [third_party/triton/lib/Dialect/TritonGPU/Transforms/Pipeliner/SoftwarePipeliner.cpp:76](https://cs.corp.google.com/piper///depot/google3/third_party/triton/lib/Dialect/TritonGPU/Transforms/Pipeliner/SoftwarePipeliner.cpp?l=76&ws=aliia/3018&snapshot=215):19
...
```
This is likely happening due to iterator being invalidated after
`alloc.erase()`.
This PR moves erases of allocations outside of a loop and fixes
heap-use-after-free issue.

Do you know if there is an easy way to run the tests under sanitizers
upstream? It would be handy if we can automate it, so we catch this kind
of errors early on.
ptillet pushed a commit that referenced this issue Apr 1, 2024
fp16 blas implementation patch
jlebar pushed a commit that referenced this issue Jun 21, 2024
When running
[convert_blocked1d_to_slice0](https://github.com/triton-lang/triton/blob/0ba5f0c3cd029d5c3d1f01b9bf29dac32c27345e/test/Conversion/tritongpu_to_llvm.mlir#L924)
Triton ends up computing a rank of a matrix with 0 columns during linear
layout lowering, which trips up f2reduce, and causes undefined behavior,
detectable through
[UBSAN](https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html).

Fix this by returning the rank (0) early in these cases, without calling
f2reduce.

<details><summary>Stack trace</summary>
<p>

```
third_party/triton/third_party/f2reduce/f2reduce.cpp:421:30: runtime error: shift exponent 18446744073709551615 is too large for 64-bit type 'unsigned long long'
    #0 0x556ee2fea3be in inplace_rref_small third_party/triton/third_party/f2reduce/f2reduce.cpp:421:30
    #1 0x556ee2fea3be in f2reduce::inplace_rref_strided(unsigned long*, unsigned long, unsigned long, unsigned long) third_party/triton/third_party/f2reduce/f2reduce.cpp:470:9
    #2 0x556ee2ea70da in getMatrixRank third_party/triton/lib/Tools/LinearLayout.cpp:125:3
    #3 0x556ee2ea70da in mlir::triton::LinearLayout::checkInvariants(bool) third_party/triton/lib/Tools/LinearLayout.cpp:299:7
    #4 0x556ee2ea656d in mlir::triton::LinearLayout::tryCreate(llvm::MapVector<mlir::StringAttr, std::__u::vector<std::__u::vector<int, std::__u::allocator<int>>, std::__u::allocator<std::__u::vector<int, std::__u::allocator<int>>>>, llvm::DenseMap<mlir::StringAttr, unsigned int, llvm::DenseMapInfo<mlir::StringAttr, void>, llvm::detail::DenseMapPair<mlir::StringAttr, unsigned int>>, llvm::SmallVector<std::__u::pair<mlir::StringAttr, std::__u::vector<std::__u::vector<int, std::__u::allocator<int>>, std::__u::allocator<std::__u::vector<int, std::__u::allocator<int>>>>>, 0u>>, llvm::ArrayRef<std::__u::pair<mlir::StringAttr, int>>, bool) third_party/triton/lib/Tools/LinearLayout.cpp:190:41
    #5 0x556ee2eb2150 in mlir::triton::LinearLayout::divideRight(mlir::triton::LinearLayout const&) third_party/triton/lib/Tools/LinearLayout.cpp:654:51
    #6 0x556ee2ee1c39 in mlir::cvtNeedsSharedMemory(mlir::RankedTensorType, mlir::RankedTensorType) third_party/triton/lib/Analysis/Utility.cpp:652:14
    #7 0x556ee2cf38fd in mlir::triton::getRepShapeForCvtLayout(mlir::triton::gpu::ConvertLayoutOp) third_party/triton/lib/Analysis/Allocation.cpp:66:8
    #8 0x556ee2cf3efa in mlir::triton::getScratchConfigForCvtLayout(mlir::triton::gpu::ConvertLayoutOp, unsigned int&, unsigned int&) third_party/triton/lib/Analysis/Allocation.cpp:95:19
    #9 0x556ee2cf6057 in mlir::triton::AllocationAnalysis::getScratchValueSize(mlir::Operation*) third_party/triton/lib/Analysis/Allocation.cpp:272:24
    #10 0x556ee2cf5499 in operator() third_party/triton/lib/Analysis/Allocation.cpp:343:7
    #11 0x556ee2cf5499 in void llvm::function_ref<void (mlir::Operation*)>::callback_fn<mlir::triton::AllocationAnalysis::getValuesAndSizes()::'lambda'(mlir::Operation*)>(long, mlir::Operation*) third_party/llvm/llvm-project/llvm/include/llvm/ADT/STLFunctionalExtras.h:45:12
    #12 0x556edeeee7a9 in operator() third_party/llvm/llvm-project/llvm/include/llvm/ADT/STLFunctionalExtras.h:68:12
    #13 0x556edeeee7a9 in void mlir::detail::walk<mlir::ForwardIterator>(mlir::Operation*, llvm::function_ref<void (mlir::Operation*)>, mlir::WalkOrder) third_party/llvm/llvm-project/mlir/include/mlir/IR/Visitors.h:174:5
    #14 0x556edeeee87c in void mlir::detail::walk<mlir::ForwardIterator>(mlir::Operation*, llvm::function_ref<void (mlir::Operation*)>, mlir::WalkOrder) third_party/llvm/llvm-project/mlir/include/mlir/IR/Visitors.h:182:9
    #15 0x556ee2cf49e7 in walk<(mlir::WalkOrder)0, mlir::ForwardIterator, (lambda at third_party/triton/lib/Analysis/Allocation.cpp:341:42), mlir::Operation *, void> third_party/llvm/llvm-project/mlir/include/mlir/IR/Visitors.h:313:10
    #16 0x556ee2cf49e7 in walk<(mlir::WalkOrder)0, mlir::ForwardIterator, (lambda at third_party/triton/lib/Analysis/Allocation.cpp:341:42), void> third_party/llvm/llvm-project/mlir/include/mlir/IR/Operation.h:794:12
    #17 0x556ee2cf49e7 in mlir::triton::AllocationAnalysis::getValuesAndSizes() third_party/triton/lib/Analysis/Allocation.cpp:341:16
    #18 0x556ee2cf4852 in run third_party/triton/lib/Analysis/Allocation.cpp:182:5
    #19 0x556ee2cf4852 in AllocationAnalysis third_party/triton/lib/Analysis/Allocation.cpp:169:5
    #20 0x556ee2cf4852 in mlir::Allocation::run(llvm::DenseMap<mlir::FunctionOpInterface, mlir::Allocation, llvm::DenseMapInfo<mlir::FunctionOpInterface, void>, llvm::detail::DenseMapPair<mlir::FunctionOpInterface, mlir::Allocation>>&) third_party/triton/lib/Analysis/Allocation.cpp:627:3
    #21 0x556ee1677402 in operator() third_party/triton/include/triton/Analysis/Allocation.h:227:26
    #22 0x556ee1677402 in void mlir::CallGraph<mlir::Allocation>::doWalk<(mlir::WalkOrder)0, (mlir::WalkOrder)1, mlir::ModuleAllocation::ModuleAllocation(mlir::ModuleOp)::'lambda'(mlir::CallOpInterface, mlir::FunctionOpInterface), mlir::ModuleAllocation::ModuleAllocation(mlir::ModuleOp)::'lambda'(mlir::FunctionOpInterface)>(mlir::FunctionOpInterface, llvm::DenseSet<mlir::FunctionOpInterface, llvm::DenseMapInfo<mlir::FunctionOpInterface, void>>&, mlir::ModuleAllocation::ModuleAllocation(mlir::ModuleOp)::'lambda'(mlir::CallOpInterface, mlir::FunctionOpInterface), mlir::ModuleAllocation::ModuleAllocation(mlir::ModuleOp)::'lambda'(mlir::FunctionOpInterface)) third_party/triton/include/triton/Analysis/Utility.h:350:7
    #23 0x556ee16756b3 in walk<(mlir::WalkOrder)0, (mlir::WalkOrder)1, (lambda at third_party/triton/include/triton/Analysis/Allocation.h:222:9), (lambda at third_party/triton/include/triton/Analysis/Allocation.h:224:9)> third_party/triton/include/triton/Analysis/Utility.h:242:7
    #24 0x556ee16756b3 in mlir::ModuleAllocation::ModuleAllocation(mlir::ModuleOp) third_party/triton/include/triton/Analysis/Allocation.h:220:5
    #25 0x556ee2c2bf18 in (anonymous namespace)::AllocateSharedMemory::runOnOperation() third_party/triton/lib/Conversion/TritonGPUToLLVM/AllocateSharedMemory.cpp:26:22
...
UndefinedBehaviorSanitizer: invalid-shift-exponent third_party/triton/third_party/f2reduce/f2reduce.cpp:421:30 
```
</p>
</details>
ZzEeKkAa pushed a commit to ZzEeKkAa/triton that referenced this issue Aug 5, 2024
…city as possible to load the dot operands. (triton-lang#1516)

Support the repCluster field in 2D load ops lowering and use the maximum
2D load capacity as possible.

---------

Co-authored-by: Whitney Tsang <whitney.tsang@intel.com>
oraluben pushed a commit to oraluben/triton that referenced this issue Sep 11, 2024
Co-authored-by: Shane Nay <snay@meta.com>
gglin001 pushed a commit to gglin001/triton that referenced this issue Nov 13, 2024
Co-authored-by: Shane Nay <snay@meta.com>
bertmaher pushed a commit to bertmaher/triton that referenced this issue Dec 10, 2024
When running
[convert_blocked1d_to_slice0](https://github.com/triton-lang/triton/blob/0ba5f0c3cd029d5c3d1f01b9bf29dac32c27345e/test/Conversion/tritongpu_to_llvm.mlir#L924)
Triton ends up computing a rank of a matrix with 0 columns during linear
layout lowering, which trips up f2reduce, and causes undefined behavior,
detectable through
[UBSAN](https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html).

Fix this by returning the rank (0) early in these cases, without calling
f2reduce.

<details><summary>Stack trace</summary>
<p>

```
third_party/triton/third_party/f2reduce/f2reduce.cpp:421:30: runtime error: shift exponent 18446744073709551615 is too large for 64-bit type 'unsigned long long'
    #0 0x556ee2fea3be in inplace_rref_small third_party/triton/third_party/f2reduce/f2reduce.cpp:421:30
    triton-lang#1 0x556ee2fea3be in f2reduce::inplace_rref_strided(unsigned long*, unsigned long, unsigned long, unsigned long) third_party/triton/third_party/f2reduce/f2reduce.cpp:470:9
    triton-lang#2 0x556ee2ea70da in getMatrixRank third_party/triton/lib/Tools/LinearLayout.cpp:125:3
    triton-lang#3 0x556ee2ea70da in mlir::triton::LinearLayout::checkInvariants(bool) third_party/triton/lib/Tools/LinearLayout.cpp:299:7
    triton-lang#4 0x556ee2ea656d in mlir::triton::LinearLayout::tryCreate(llvm::MapVector<mlir::StringAttr, std::__u::vector<std::__u::vector<int, std::__u::allocator<int>>, std::__u::allocator<std::__u::vector<int, std::__u::allocator<int>>>>, llvm::DenseMap<mlir::StringAttr, unsigned int, llvm::DenseMapInfo<mlir::StringAttr, void>, llvm::detail::DenseMapPair<mlir::StringAttr, unsigned int>>, llvm::SmallVector<std::__u::pair<mlir::StringAttr, std::__u::vector<std::__u::vector<int, std::__u::allocator<int>>, std::__u::allocator<std::__u::vector<int, std::__u::allocator<int>>>>>, 0u>>, llvm::ArrayRef<std::__u::pair<mlir::StringAttr, int>>, bool) third_party/triton/lib/Tools/LinearLayout.cpp:190:41
    triton-lang#5 0x556ee2eb2150 in mlir::triton::LinearLayout::divideRight(mlir::triton::LinearLayout const&) third_party/triton/lib/Tools/LinearLayout.cpp:654:51
    triton-lang#6 0x556ee2ee1c39 in mlir::cvtNeedsSharedMemory(mlir::RankedTensorType, mlir::RankedTensorType) third_party/triton/lib/Analysis/Utility.cpp:652:14
    triton-lang#7 0x556ee2cf38fd in mlir::triton::getRepShapeForCvtLayout(mlir::triton::gpu::ConvertLayoutOp) third_party/triton/lib/Analysis/Allocation.cpp:66:8
    triton-lang#8 0x556ee2cf3efa in mlir::triton::getScratchConfigForCvtLayout(mlir::triton::gpu::ConvertLayoutOp, unsigned int&, unsigned int&) third_party/triton/lib/Analysis/Allocation.cpp:95:19
    triton-lang#9 0x556ee2cf6057 in mlir::triton::AllocationAnalysis::getScratchValueSize(mlir::Operation*) third_party/triton/lib/Analysis/Allocation.cpp:272:24
    triton-lang#10 0x556ee2cf5499 in operator() third_party/triton/lib/Analysis/Allocation.cpp:343:7
    triton-lang#11 0x556ee2cf5499 in void llvm::function_ref<void (mlir::Operation*)>::callback_fn<mlir::triton::AllocationAnalysis::getValuesAndSizes()::'lambda'(mlir::Operation*)>(long, mlir::Operation*) third_party/llvm/llvm-project/llvm/include/llvm/ADT/STLFunctionalExtras.h:45:12
    triton-lang#12 0x556edeeee7a9 in operator() third_party/llvm/llvm-project/llvm/include/llvm/ADT/STLFunctionalExtras.h:68:12
    triton-lang#13 0x556edeeee7a9 in void mlir::detail::walk<mlir::ForwardIterator>(mlir::Operation*, llvm::function_ref<void (mlir::Operation*)>, mlir::WalkOrder) third_party/llvm/llvm-project/mlir/include/mlir/IR/Visitors.h:174:5
    triton-lang#14 0x556edeeee87c in void mlir::detail::walk<mlir::ForwardIterator>(mlir::Operation*, llvm::function_ref<void (mlir::Operation*)>, mlir::WalkOrder) third_party/llvm/llvm-project/mlir/include/mlir/IR/Visitors.h:182:9
    triton-lang#15 0x556ee2cf49e7 in walk<(mlir::WalkOrder)0, mlir::ForwardIterator, (lambda at third_party/triton/lib/Analysis/Allocation.cpp:341:42), mlir::Operation *, void> third_party/llvm/llvm-project/mlir/include/mlir/IR/Visitors.h:313:10
    triton-lang#16 0x556ee2cf49e7 in walk<(mlir::WalkOrder)0, mlir::ForwardIterator, (lambda at third_party/triton/lib/Analysis/Allocation.cpp:341:42), void> third_party/llvm/llvm-project/mlir/include/mlir/IR/Operation.h:794:12
    triton-lang#17 0x556ee2cf49e7 in mlir::triton::AllocationAnalysis::getValuesAndSizes() third_party/triton/lib/Analysis/Allocation.cpp:341:16
    triton-lang#18 0x556ee2cf4852 in run third_party/triton/lib/Analysis/Allocation.cpp:182:5
    triton-lang#19 0x556ee2cf4852 in AllocationAnalysis third_party/triton/lib/Analysis/Allocation.cpp:169:5
    triton-lang#20 0x556ee2cf4852 in mlir::Allocation::run(llvm::DenseMap<mlir::FunctionOpInterface, mlir::Allocation, llvm::DenseMapInfo<mlir::FunctionOpInterface, void>, llvm::detail::DenseMapPair<mlir::FunctionOpInterface, mlir::Allocation>>&) third_party/triton/lib/Analysis/Allocation.cpp:627:3
    triton-lang#21 0x556ee1677402 in operator() third_party/triton/include/triton/Analysis/Allocation.h:227:26
    triton-lang#22 0x556ee1677402 in void mlir::CallGraph<mlir::Allocation>::doWalk<(mlir::WalkOrder)0, (mlir::WalkOrder)1, mlir::ModuleAllocation::ModuleAllocation(mlir::ModuleOp)::'lambda'(mlir::CallOpInterface, mlir::FunctionOpInterface), mlir::ModuleAllocation::ModuleAllocation(mlir::ModuleOp)::'lambda'(mlir::FunctionOpInterface)>(mlir::FunctionOpInterface, llvm::DenseSet<mlir::FunctionOpInterface, llvm::DenseMapInfo<mlir::FunctionOpInterface, void>>&, mlir::ModuleAllocation::ModuleAllocation(mlir::ModuleOp)::'lambda'(mlir::CallOpInterface, mlir::FunctionOpInterface), mlir::ModuleAllocation::ModuleAllocation(mlir::ModuleOp)::'lambda'(mlir::FunctionOpInterface)) third_party/triton/include/triton/Analysis/Utility.h:350:7
    triton-lang#23 0x556ee16756b3 in walk<(mlir::WalkOrder)0, (mlir::WalkOrder)1, (lambda at third_party/triton/include/triton/Analysis/Allocation.h:222:9), (lambda at third_party/triton/include/triton/Analysis/Allocation.h:224:9)> third_party/triton/include/triton/Analysis/Utility.h:242:7
    triton-lang#24 0x556ee16756b3 in mlir::ModuleAllocation::ModuleAllocation(mlir::ModuleOp) third_party/triton/include/triton/Analysis/Allocation.h:220:5
    triton-lang#25 0x556ee2c2bf18 in (anonymous namespace)::AllocateSharedMemory::runOnOperation() third_party/triton/lib/Conversion/TritonGPUToLLVM/AllocateSharedMemory.cpp:26:22
...
UndefinedBehaviorSanitizer: invalid-shift-exponent third_party/triton/third_party/f2reduce/f2reduce.cpp:421:30 
```
</p>
</details>
stephen-huan pushed a commit to stephen-huan/triton that referenced this issue Dec 24, 2024
Co-authored-by: Shane Nay <snay@meta.com>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

No branches or pull requests

2 participants