Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Iso acoustic masking and improved vp updates #82

Merged
merged 9 commits into from
Jul 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions docker/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -81,19 +81,19 @@ docker build --network=host --file docker/Dockerfile.stride --tag stride .
And to build the GPU image with `openacc` offloading and the `nvc` compiler, simply run:

```bash
docker build --build-arg base=devitocodes/base:nvidia-nvc --network=host --file docker/Dockerfile.stride --tag stride .
docker build --build-arg base=devitocodes/bases:nvidia-nvc --network=host --file docker/Dockerfile.stride --tag stride .
```

or if you wish to use the `llvm-15` (clang) compiler with `openmp` offlaoding:

```bash
docker build --build-arg base=devitocodes/base:nvidia-clang --network=host --file docker/Dockerfile.stride --tag stride .
docker build --build-arg base=devitocodes/bases:nvidia-clang --network=host --file docker/Dockerfile.stride --tag stride .
```

and finally for AMD architectures:

```bash
docker build --build-arg base=devitocodes/base:amd --network=host --file docker/Dockerfile.stride --tag stride .
docker build --build-arg base=devitocodes/bases:amd --network=host --file docker/Dockerfile.stride --tag stride .
```


Expand Down
4 changes: 2 additions & 2 deletions mosaic/cli/mprof.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,11 +25,11 @@ def __init__(self, label_id, label):
# EVENTS
#
# * Tessera
# Remote: init --> (listening --> running) --> collected
# Remote: init --> listening --> collected
# Proxy: pending --> init --> listening --> collected
#
# * Task
# Remote: init --> pending --> ready --> running --> done --> collected
# Remote: init --> pending --> done/failed --> collected
# Proxy: pending --> init --> queued --> (done --> result) --> collected


Expand Down
2 changes: 1 addition & 1 deletion mosaic/cli/mrun.py
Original file line number Diff line number Diff line change
Expand Up @@ -146,7 +146,7 @@ def start_runtime(*args, **extra_kwargs):
_runtime.init_file(runtime_config)

def run_head():
process = cmd_subprocess.run(cmd,
process = cmd_subprocess.run(' '.join(cmd), shell=True,
stdout=_stdout,
stderr=_stderr)

Expand Down
17 changes: 9 additions & 8 deletions mosaic/comms/comms.py
Original file line number Diff line number Diff line change
Expand Up @@ -771,19 +771,20 @@ def _process_send(self, method, cmd=None, reply=False, **kwargs):
'cmd': cmd,
}

msg = serialise(msg)
msg_size = sizeof(msg)

if not method.startswith('log') and not method.startswith('update_monitored_node'):
if method == 'cmd':
method = '%s:%s.%s' % (method, cmd['type'], cmd['method'])

self.logger.debug('Sending cmd %s %s to %s (%s) from %s' % (method, cmd['method'],
self.uid, cmd['uid'],
self._runtime.uid))
self.logger.debug('Sending cmd %s %s to %s (%s) from %s '
'(size %.2f MB)' % (method, cmd['method'], self.uid, cmd['uid'],
self._runtime.uid, msg_size/1024**2))
else:
self.logger.debug('Sending msg %s to %s from %s' % (method, self.uid,
self._runtime.uid))

msg = serialise(msg)
msg_size = sizeof(msg)
self.logger.debug('Sending msg %s to %s from %s '
'(size %.2f MB)' % (method, self.uid, self._runtime.uid,
msg_size/1024**2))

compression = []
compressed_msg = []
Expand Down
2 changes: 1 addition & 1 deletion mosaic/comms/serialisation.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ def serialise(data):
"""
try:
return pickle5_dumps(data)
except pickle.PicklingError:
except (pickle.PicklingError, AttributeError):
return cloudpickle.dumps(data), []


Expand Down
1 change: 0 additions & 1 deletion mosaic/core/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -439,7 +439,6 @@ def __deepcopy__(self, memo):
async def deregister(self):
try:
self.logger.debug('Garbage collected object %s' % self)
self.state_changed('collected')
except AttributeError:
pass

Expand Down
8 changes: 3 additions & 5 deletions mosaic/core/tessera.py
Original file line number Diff line number Diff line change
Expand Up @@ -262,6 +262,8 @@ async def listen_async(self):
if self._state != 'init':
return

self.state_changed('listening')

while True:
sender_id, task = await self._task_queue.get()
# Make sure that the loop does not keep implicit references to the task until the
Expand All @@ -288,12 +290,10 @@ async def run_async(self):
-------

"""
if self._state != 'init':
if self._state != 'listening':
return

while True:
self.state_changed('listening')

sender_id, task, future = await self._run_queue.get()
# Make sure that the loop does not keep implicit references to the task until the
# next task arrives in the queue
Expand All @@ -319,8 +319,6 @@ async def run_async(self):
self.obj.__class__.__name__))

await asyncio.sleep(0)
self.state_changed('running')
task.state_changed('running')
await self.logger.send()
await self.call_safe(sender_id, method, task)

Expand Down
4 changes: 2 additions & 2 deletions stride/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -108,7 +108,7 @@ async def forward(problem, pde, *args, **kwargs):
published_args = await asyncio.gather(*published_args)

platform = kwargs.get('platform', 'cpu')
using_gpu = platform in ['nvidia-acc', 'gpu']
using_gpu = 'nvidia' in platform or 'gpu' in platform
if using_gpu:
devices = kwargs.pop('devices', None)
num_gpus = gpu_count() if devices is None else len(devices)
Expand Down Expand Up @@ -251,7 +251,7 @@ async def adjoint(problem, pde, loss, optimisation_loop, optimiser, *args, **kwa
keep_residual = isinstance(step_size, LineSearch)

platform = kwargs.get('platform', 'cpu')
using_gpu = platform in ['nvidia-acc', 'gpu']
using_gpu = 'nvidia' in platform or 'gpu' in platform
if using_gpu:
devices = kwargs.pop('devices', None)
num_gpus = gpu_count() if devices is None else len(devices)
Expand Down
4 changes: 4 additions & 0 deletions stride/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -288,6 +288,7 @@ def __init__(self, *args, **kwargs):

self.grad = None
self.prec = None
self.transform = kwargs.pop('transform', None)

self.graph = Graph()
self.prev_op = None
Expand Down Expand Up @@ -384,6 +385,7 @@ def detach(self, *args, **kwargs):
"""
kwargs['name'] = kwargs.pop('name', self._init_name)
kwargs['needs_grad'] = kwargs.pop('needs_grad', self.needs_grad)
kwargs['transform'] = kwargs.pop('transform', self.transform)

if hasattr(self, 'has_tessera') and self.has_tessera:
cpy = self.__class__.parameter(*args, **kwargs)
Expand Down Expand Up @@ -411,6 +413,7 @@ def as_parameter(self, *args, **kwargs):
"""
kwargs['name'] = kwargs.pop('name', self._init_name)
kwargs['needs_grad'] = kwargs.pop('needs_grad', self.needs_grad)
kwargs['transform'] = kwargs.pop('transform', self.transform)

cpy = self.__class__.parameter(*args, **kwargs)

Expand All @@ -437,6 +440,7 @@ def copy(self, *args, **kwargs):
"""
kwargs['name'] = kwargs.pop('name', self._init_name)
kwargs['needs_grad'] = kwargs.pop('needs_grad', self.needs_grad)
kwargs['transform'] = kwargs.pop('transform', self.transform)

propagate_tessera = kwargs.pop('propagate_tessera', True)

Expand Down
4 changes: 2 additions & 2 deletions stride/optimisation/loss/l2_distance.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@ def __init__(self, **kwargs):

self.residual = None

async def forward(self, modelled, observed, **kwargs):
def forward(self, modelled, observed, **kwargs):
problem = kwargs.pop('problem', None)
shot_id = problem.shot_id if problem is not None \
else kwargs.pop('shot_id', 0)
Expand All @@ -38,7 +38,7 @@ async def forward(self, modelled, observed, **kwargs):

return fun

async def adjoint(self, d_fun, modelled, observed, **kwargs):
def adjoint(self, d_fun, modelled, observed, **kwargs):
grad_modelled = None
if modelled.needs_grad:
grad_modelled = +np.asarray(d_fun) * self.residual.copy(name='modelledresidual')
Expand Down
6 changes: 3 additions & 3 deletions stride/optimisation/optimisers/gradient_descent.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,6 @@ async def pre_process(self, grad=None, processed_grad=None, **kwargs):
**kwargs)
return processed_grad

async def update_variable(self, step_size, direction):
self.variable.data[:] -= step_size * direction.data
return self.variable
def update_variable(self, step_size, variable, direction):
variable.data[:] -= step_size * direction.data
return variable
35 changes: 29 additions & 6 deletions stride/optimisation/optimisers/optimiser.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,13 +77,14 @@ async def pre_process(self, grad=None, processed_grad=None, **kwargs):
logger = mosaic.logger()
logger.perf('Updating variable %s,' % self.variable.name)

problem = kwargs.pop('problem', None)
iteration = kwargs.pop('iteration', None)

if processed_grad is None:
if grad is None:
if hasattr(self.variable, 'is_proxy') and self.variable.is_proxy:
await self.variable.pull(attr='grad')

problem = kwargs.pop('problem', None)
iteration = kwargs.pop('iteration', None)
dump_grad = kwargs.pop('dump_grad', self.dump_grad)
dump_prec = kwargs.pop('dump_prec', self.dump_prec)
if dump_grad and problem is not None:
Expand All @@ -95,6 +96,7 @@ async def pre_process(self, grad=None, processed_grad=None, **kwargs):
if dump_prec and self.variable.grad.prec is not None and problem is not None:
self.variable.grad.prec.dump(path=problem.output_folder,
project_name=problem.name,
parameter='raw_%s' % self.variable.grad.prec.name,
version=iteration.abs_id+1)

grad = self.variable.process_grad(**kwargs)
Expand All @@ -104,6 +106,11 @@ async def pre_process(self, grad=None, processed_grad=None, **kwargs):
project_name=problem.name,
version=iteration.abs_id+1)

if dump_prec and self.variable.grad.prec is not None and problem is not None:
self.variable.grad.prec.dump(path=problem.output_folder,
project_name=problem.name,
version=iteration.abs_id+1)

min_dir = np.min(grad.data)
max_dir = np.max(grad.data)

Expand All @@ -112,6 +119,13 @@ async def pre_process(self, grad=None, processed_grad=None, **kwargs):

processed_grad = await self._process_grad(grad, variable=self.variable, **kwargs)

dump_processed_grad = kwargs.pop('dump_processed_grad', self.dump_grad)
if dump_processed_grad and problem is not None:
processed_grad.dump(path=problem.output_folder,
project_name=problem.name,
parameter='processed_%s' % self.variable.grad.name,
version=iteration.abs_id + 1)

test_step_size = kwargs.pop('test_step_size', self.test_step_size)
processed_grad.data[:] *= test_step_size

Expand Down Expand Up @@ -163,7 +177,7 @@ async def step(self, step_size=None, grad=None, processed_grad=None, **kwargs):
step_size = self.step_size if step_size is None else step_size
step_loop = kwargs.pop('step_loop', None)
if isinstance(step_size, LineSearch):
await step_size.init_search(
step_size.init_search(
variable=self.variable,
direction=direction,
**kwargs
Expand All @@ -177,7 +191,7 @@ async def step(self, step_size=None, grad=None, processed_grad=None, **kwargs):
next_step = 1.
done_search = True
else:
next_step, done_search = await step_size.next_step(
next_step, done_search = step_size.next_step(
variable=self.variable,
direction=direction,
**kwargs
Expand Down Expand Up @@ -208,7 +222,14 @@ async def step(self, step_size=None, grad=None, processed_grad=None, **kwargs):
self.variable.data[:] = variable_before.data.copy()

# update variable
await self.update_variable(next_step, direction)
if self.variable.transform is not None:
variable = self.variable.transform(self.variable)
else:
variable = self.variable
upd_variable = self.update_variable(next_step, variable, direction)
if self.variable.transform is not None:
upd_variable = self.variable.transform(upd_variable)
self.variable.data[:] = upd_variable.data.copy()

# post-process variable after update
await self.post_process(**kwargs)
Expand Down Expand Up @@ -254,13 +275,15 @@ async def post_process(self, **kwargs):
self.variable.release_grad()

@abstractmethod
async def update_variable(self, step_size, direction):
def update_variable(self, step_size, variable, direction):
"""

Parameters
----------
step_size : float
Step size to use for updating the variable.
variable : Data
Variable to update.
direction : Data
Direction in which to update the variable.

Expand Down
36 changes: 34 additions & 2 deletions stride/optimisation/pipelines/steps/mask_field.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,33 @@
from ....core import Operator


def _rampoff_mask(shape, ramp_size):
mask = np.ones(shape, dtype=np.float32)

for dim_i in range(len(shape)):
if 2*ramp_size > shape[dim_i]:
continue
for index in range(ramp_size):
pos = np.abs((ramp_size - index - 1) / float(ramp_size - 1))
val = 1 - np.cos(np.pi / 2 * (1 - pos))

# : slices
all_ind = [slice(index, s - index + 1) for s in shape]

# Left slice
all_ind[dim_i] = index
mask[tuple(all_ind)] = val

# : slices
all_ind = [slice(index, s - index + 1) for s in shape]

# right slice
all_ind[dim_i] = -index
mask[tuple(all_ind)] = val

return mask


class MaskField(Operator):
"""
Mask a StructuredData object to remove values outside inner domain.
Expand All @@ -17,13 +44,18 @@ class MaskField(Operator):
def __init__(self, **kwargs):
super().__init__(**kwargs)

self.mask_rampoff = kwargs.pop('mask_rampoff', 10)
self._mask = kwargs.pop('mask', None)

def forward(self, field, **kwargs):
mask = kwargs.pop('mask', self._mask)
mask = kwargs.pop('mask', None)
mask_rampoff = kwargs.pop('mask_rampoff', self.mask_rampoff)
mask = self._mask if mask is None else mask
if mask is None:
mask = np.zeros(field.extended_shape)
mask = np.zeros(field.extended_shape, dtype=np.float32)
mask[field.inner] = 1
mask *= _rampoff_mask(mask.shape, mask_rampoff)
self._mask = mask

out_field = field.alike(name=name_from_op_name(self, field))
out_field.extended_data[:] = field.extended_data
Expand Down
17 changes: 16 additions & 1 deletion stride/optimisation/pipelines/steps/norm_field.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,17 +18,32 @@ def __init__(self, **kwargs):
super().__init__(**kwargs)

self.global_norm = kwargs.pop('global_norm', False)
self.norm_guess_change = kwargs.pop('norm_guess_change', 0.5)
self.norm_value = None

def forward(self, field, **kwargs):
variable = kwargs.pop('variable', None)
global_norm = kwargs.pop('global_norm', self.global_norm)
norm_guess_change = kwargs.pop('norm_guess_change', self.norm_guess_change)

if self.norm_value is None or not global_norm:
self.norm_value = np.max(np.abs(field.extended_data)) + 1e-31

# work out guess change based on field value
if variable is not None:
min_val = np.min(variable.extended_data)
max_val = np.max(variable.extended_data)

mid_val = (max_val + min_val) / 2.0
if variable.transform is not None:
mid_val = variable.transform(mid_val)
var_corr = mid_val * norm_guess_change / 100
else:
var_corr = 1.

out_field = field.alike(name=name_from_op_name(self, field))
out_field.extended_data[:] = field.extended_data
out_field.extended_data[:] /= self.norm_value
out_field.extended_data[:] *= var_corr / self.norm_value

return out_field

Expand Down
Loading
Loading