Skip to content

A systematic testing tool for automatically detecting erroneous behaviors of DNN-driven vehicles

Notifications You must be signed in to change notification settings

tshellum/deepTest-OD

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

49 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DeepTest modified: Automated testing of deep learning based object detection

This is a modified version of DeepTest for CNNs used for object detection. This repo obtains an overview of neuron coverage (together with evaluating performance) of the network on an input image and comparing this to multiple augmented images.

Usage

python3 cnn_coverage.py path/to/data/folder

Notice that the data must contain imagefiles with assosiated .xml label files. Optional arguments:

  • --weights path/to/weights.h5
  • --classes path/to/classes.csv
  • --results path/to/results.csv

Example of usage:

python3 cnn_coverage.py data/data --weights ../keras-retinanet/snapshots/resnet50_csv_10_inference.h5 --results data/results.csv --classes ../keras-retinanet/images/csv/class_id.csv

If --weights are not specified, the default path will be ../keras-retinanet/snapshots/resnet50_coco_best_v2.1.0.h5. If --classes are not specified the default classes used for the predictions are the classes assosiated with the coco dataset.

  • Important: If either --classes or --weights is specified, then the other argument follow.

The last argument, --results, expects the path to a csv-file containing the previous results of the test, i.e. this argument allows you to continue the training from previous runs.

Citation

If you find DeepTest useful for your research, please cite the following paper:

@article{tian2017deeptest,
  title={DeepTest: Automated testing of deep-neural-network-driven autonomous cars},
  author={Tian, Yuchi and Pei, Kexin and Jana, Suman and Ray, Baishakhi},
  journal={arXiv preprint arXiv:1708.08559},
  year={2017}
}

About

A systematic testing tool for automatically detecting erroneous behaviors of DNN-driven vehicles

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 99.0%
  • Shell 1.0%