A Self-Supervised Contrastive Learning Framework for Aspect Detection
This repository is a pytorch implementation for the following AAAI'21 paper:
Tian Shi, Liuqing Li, Ping Wang, Chandan K. Reddy
- Python 3.6.9
- argparse=1.1
- torch=1.4.0
- sklearn=0.22.2.post1
- numpy=1.18.2
- gensim=3.8.3
You can download processed dataset from here. Place them along side with AapDecSSCL.
|--- AspDecSSCL
|--- Data
| |--- bags_and_cases
| |--- restaurant
| | |--- dev.txt
| | |--- test.txt
| | |--- train.txt
| | |--- train_w2v.txt
|--- cluster_results (results, automatically build)
|--- nats_results (results, automatically build)
|
Train word2vec:
python3 run.py --task word2vec
Run Kmeans:
python3 run.py --task kmeans
Check Kmeans Keywords
python3 run.py --task kmeans-keywords
SSCL Training
python3 run.py --task sscl-train
Before validation, you need to perform aspect mapping
. There is a file aspect_mapping.txt
in nats_results
. For general
, please change nomap
to none
. Other aspects should use their names. Please check test.txt
to validate the names.
SSCL validation
python3 run.py --task sscl-validate
SSCL testing
python3 run.py --task sscl-test
SSCL evaluate
python3 run.py --task sscl-evaluate
SSCL teacher
python3 run.py --task sscl-teacher
SSCL clean results
python3 run.py --task sscl-clean
SSCLS training
python3 run.py --task student-train
SSCLS validation
python3 run.py --task student-validate
SSCLS testing
python3 run.py --task student-test
SSCLS testing
python3 run.py --task student-evaluate
SSCLS clean
python3 run.py --task student-clean
@article{shi2020simple,
title={A Simple and Effective Self-Supervised Contrastive Learning Framework for Aspect Detection},
author={Shi, Tian and Li, Liuqing and Wang, Ping and Reddy, Chandan K},
journal={arXiv preprint arXiv:2009.09107},
year={2020}
}