Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[MRG] Fix numpy versions problems #411

Merged
Merged
Changes from 1 commit
Commits
Show all changes
69 commits
Select commit Hold shift + click to select a range
c49ffaa
add new empty line at the end of python file in tslearn/clustering/__…
YannCabanes Jun 3, 2022
7761eb0
Merge branch 'main' of github.com:tslearn-team/tslearn into main
YannCabanes Jun 29, 2022
5a55157
Empty commit
YannCabanes Jul 1, 2022
295f23f
Upgrade numpy
YannCabanes Jul 4, 2022
8ed9d19
Upgrade numpy with --ignore-installed
YannCabanes Jul 4, 2022
1b98337
Upgrade numpy with --ignore-installed before scikit-learn install
YannCabanes Jul 4, 2022
74d10d7
Specify numpy version 1.22 for Numba compatibility
YannCabanes Jul 4, 2022
49ee566
Correct numpy version 1.22 instead of 0.22
YannCabanes Jul 4, 2022
ac0e258
Use numpy version 1.21.6 for Python 3.7 compatibility
YannCabanes Jul 4, 2022
cc3ed14
Try to unspecify scikit-learn version
YannCabanes Jul 4, 2022
7aa61f2
Empty commit
YannCabanes Jul 4, 2022
9a8c0ec
Remove commented lines
YannCabanes Jul 4, 2022
22e3c22
Try to install numpy before requirements
YannCabanes Jul 6, 2022
f201499
Specify scikit-learn==1.0
YannCabanes Jul 6, 2022
6fc0fae
Add --upgrade option for requirements.
YannCabanes Jul 6, 2022
98e480b
Add eager option for requirements install.
YannCabanes Jul 6, 2022
c0070cc
Install numpy==1.22 for Python 3.8 adn 3.9 only (for linux).
YannCabanes Jul 6, 2022
11cb4f0
Remove tests on Python 3.7 for now (on linux)
YannCabanes Jul 6, 2022
2219370
Fix error in writing numpy==1.22
YannCabanes Jul 6, 2022
9b1dac8
Install scikit-learn==1.0 before reading the requirements
YannCabanes Jul 6, 2022
3a6e357
Back to the main branch of tslearn
YannCabanes Aug 1, 2022
2113c82
Add numpy.import_array() after cimport numpy
YannCabanes Aug 1, 2022
9088159
Replace cython files (.pyx) by usual python files (.py)
YannCabanes Aug 4, 2022
b58e24c
Remove cython from requirements and setup file
YannCabanes Aug 4, 2022
d6cc102
Use numba in python files which where previously written in cython
YannCabanes Aug 5, 2022
d4f8ee5
Change prange into range for loop with reversed index
YannCabanes Aug 5, 2022
0298027
Remove reversed order in loop for numba nopython compatibility
YannCabanes Aug 5, 2022
e35df6f
Correct dtype error
YannCabanes Aug 5, 2022
7d7b301
Remove useless variables and vectorize some for loops
YannCabanes Aug 5, 2022
f3311e3
Define forgotten variable
YannCabanes Aug 5, 2022
485ce34
Specify float dtype of a matrix
YannCabanes Aug 6, 2022
5efdfa5
Add docstrings
YannCabanes Aug 17, 2022
5113b82
Temporarily comment jit decorator to focus on other sources of code e…
YannCabanes Aug 17, 2022
f6d9633
Correct indice error in for loop.
YannCabanes Aug 22, 2022
8282265
Add necessary for loop.
YannCabanes Aug 22, 2022
be5802b
Add jit decorators.
YannCabanes Aug 22, 2022
149dd83
Try to change np.float64 to float in type checks for Python 3.7 compa…
YannCabanes Aug 23, 2022
63e5688
Comment assert dtype == np.float64 to solve Python 3.7 error
YannCabanes Aug 25, 2022
ce486c3
Update macOS-10.15 to macOS-12 in azure-pipelines.yml
YannCabanes Aug 26, 2022
9fa690e
Add input variable types in jit decorator
YannCabanes Aug 26, 2022
10deda2
Add type signature in git decorators of cycc.py
YannCabanes Aug 29, 2022
344fd6f
Add type signature in jit decorator of functions of cysax.py
YannCabanes Aug 29, 2022
8dea56b
Correct input type in jit decorator
YannCabanes Sep 1, 2022
b143d35
Correct input type in jit decorator of cydist_sax function
YannCabanes Sep 1, 2022
d141b5f
Try intp input type in jit decorator of function cydist_sax
YannCabanes Sep 1, 2022
f02aac7
Try to use typeof for type inference in jit decorator of function cyd…
YannCabanes Sep 1, 2022
e8aea51
Try to use typeof array for type inference in jit decorator of functi…
YannCabanes Sep 2, 2022
82fded2
Use typeof array for type inference in jit decorator of function cydi…
YannCabanes Sep 2, 2022
12fe9ed
Use typeof array for type inference in jit decorator of function inv_…
YannCabanes Sep 2, 2022
7f0cf46
Solve np.linalg.norm problem in cycc.py for use of nopython mode in j…
YannCabanes Sep 2, 2022
1c95ab0
Use nopython mode in jit decorated functions of cysax.py and soft_dtw…
YannCabanes Sep 2, 2022
91efe3f
Add parallel option in jit decorators in files cycc.py and cysax.py
YannCabanes Sep 3, 2022
66e8ada
Add parallel option in jit decorator of function _jacobian_product_sq…
YannCabanes Sep 3, 2022
ec00802
Delete useless white space to restart the continuous integration tests
YannCabanes Sep 3, 2022
521eb29
Add fastmath option in jit decorators
YannCabanes Sep 3, 2022
e1488e0
Simplify arrays in Numba typeof for type induction in jit decorators
YannCabanes Sep 6, 2022
5beb063
Add parallel option in jit decorators of functions _soft_dtw and _sof…
YannCabanes Sep 6, 2022
9a3ea24
Use range in decreasing order in function _soft_dtw_grad
YannCabanes Sep 6, 2022
6491c3b
Modify loop structure in funtion cdist_normalized_cc to use Numba prange
YannCabanes Sep 6, 2022
5aa65ad
Correct docstring error in normalized_cc function
YannCabanes Sep 6, 2022
5b6aef3
Add void as output type in jit decorator of functions _soft_dtw, _sof…
YannCabanes Sep 6, 2022
41386d5
Remove comments in file cycc.py
YannCabanes Sep 6, 2022
e9908ed
Remove comments in file cysax.py
YannCabanes Sep 6, 2022
aaba647
Remove comments in file soft_dtw_fast.py
YannCabanes Sep 6, 2022
37e54a8
Remove unused imports
YannCabanes Sep 6, 2022
46f9295
Remove signatures (input and output types) in jit decorators
YannCabanes Sep 23, 2022
7c859e1
Empty commit
YannCabanes Sep 26, 2022
eb111e1
Vectorize a for loop in function inv_transform_sax
YannCabanes Sep 28, 2022
1975b0f
Restore previous code formulation in function gamma_soft_dtw
YannCabanes Sep 30, 2022
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
Try to use typeof array for type inference in jit decorator of functi…
…on cydist_sax
YannCabanes committed Sep 2, 2022

Verified

This commit was signed with the committer’s verified signature. The key has expired.
colombod Diego Colombo
commit e8aea51cef9e459b992921af604e65ea9fc08402
3 changes: 2 additions & 1 deletion tslearn/metrics/cysax.py
Original file line number Diff line number Diff line change
@@ -48,7 +48,8 @@ def inv_transform_paa(dataset_paa, original_size):
# @njit(float64(int64[:, :], int64[:, :], float64[:], int64))
# @njit(float64(int32[:, :], int32[:, :], float64[:], int32))
# @njit(float64(intp[:, :], intp[:, :], float64[:], intp))
@njit(float64(typeof(1)[:, :], typeof(1)[:, :], float64[:], typeof(1)))
# @njit(float64(typeof(1)[:, :], typeof(1)[:, :], float64[:], typeof(1)))
@njit(float64(typeof(np.array([[1], [2]])), typeof(np.array([[1], [2]])), float64[:], typeof(1)))
def cydist_sax(sax1, sax2, breakpoints, original_size):
"""Compute distance between SAX representations as defined in [1]_.