Skip to content

tuhinjubcse/ArgReframingNAACL2021

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 

Repository files navigation

ArgReframingNAACL2021

    pip install torch==1.3.1

In the fairseq/connotations folder you can put the train.source , train.target , val.source , val.target files The data and model is available on request as we understand that our data can be misused for generations and manipulation

Please email tuhin.chakr@cs.columbia.edu / smara@cs.columbia.edu and fill the form https://docs.google.com/forms/d/e/1FAIpQLSdM3qRWHV4lgpIkRkZ74YwS2haD6qUTrzujsasJpaBbH9EnQA/viewform?usp=sf_link

Change the encoder.json path to correct path in fairseq/fairseq/data/encoder/gpt2_bpe_utils.py line 131

      run sh preprocess1.sh
      run sh preprocess2.sh
      run sh trainbart.sh


      pip install allennlp==1.0.0
      pip install allennlp_models

After model is finetuned use python finalent.py to generate

            Test data and model output for ENTRUST and various systems is in fairseq/testdata/ folder
            Input partisanfinal.source fallaciesfinal.source 
            Output for ENTRUST partisanfinal.hypo fallaciesfinal.hypo 
            Gold is fallaciesgoldhuman and partisangoldhuman

If you use any data or code please cite us

            @article{chakrabarty2021entrust,
              title={ENTRUST: Argument Reframing with Language Models and Entailment},
              author={Chakrabarty, Tuhin and Hidey, Christopher and Muresan, Smaranda},
              journal={arXiv preprint arXiv:2103.06758},
              year={2021}
            }

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published