Skip to content

Updated readability #748

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 1 commit into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,15 +13,15 @@ These are the main components of the Recommendation Algorithm included in this r
| Feature | [SimClusters](src/scala/com/twitter/simclusters_v2/README.md) | Community detection and sparse embeddings into those communities. |
| | [TwHIN](https://github.com/twitter/the-algorithm-ml/blob/main/projects/twhin/README.md) | Dense knowledge graph embeddings for Users and Tweets. |
| | [trust-and-safety-models](trust_and_safety_models/README.md) | Models for detecting NSFW or abusive content. |
| | [real-graph](src/scala/com/twitter/interaction_graph/README.md) | Model to predict likelihood of a Twitter User interacting with another User. |
| | [real-graph](src/scala/com/twitter/interaction_graph/README.md) | Model to predict the likelihood of a Twitter User interacting with another User. |
| | [tweepcred](src/scala/com/twitter/graph/batch/job/tweepcred/README) | Page-Rank algorithm for calculating Twitter User reputation. |
| | [recos-injector](recos-injector/README.md) | Streaming event processor for building input streams for [GraphJet](https://github.com/twitter/GraphJet) based services. |
| | [graph-feature-service](graph-feature-service/README.md) | Serves graph features for a directed pair of Users (e.g. how many of User A's following liked Tweets from User B). |
| Candidate Source | [search-index](src/java/com/twitter/search/README.md) | Find and rank In-Network Tweets. ~50% of Tweets come from this candidate source. |
| | [cr-mixer](cr-mixer/README.md) | Coordination layer for fetching Out-of-Network tweet candidates from underlying compute services. |
| | [user-tweet-entity-graph](src/scala/com/twitter/recos/user_tweet_entity_graph/README.md) (UTEG)| Maintains an in memory User to Tweet interaction graph, and finds candidates based on traversals of this graph. This is built on the [GraphJet](https://github.com/twitter/GraphJet) framework. Several other GraphJet based features and candidate sources are located [here](src/scala/com/twitter/recos) |
| | [follow-recommendation-service](follow-recommendations-service/README.md) (FRS)| Provides Users with recommendations for accounts to follow, and Tweets from those accounts. |
| Ranking | [light-ranker](src/python/twitter/deepbird/projects/timelines/scripts/models/earlybird/README.md) | Light ranker model used by search index (Earlybird) to rank Tweets. |
| Ranking | [light-ranker](src/python/twitter/deepbird/projects/timelines/scripts/models/earlybird/README.md) | Light Ranker model used by search index (Earlybird) to rank Tweets. |
| | [heavy-ranker](https://github.com/twitter/the-algorithm-ml/blob/main/projects/home/recap/README.md) | Neural network for ranking candidate tweets. One of the main signals used to select timeline Tweets post candidate sourcing. |
| Tweet mixing & filtering | [home-mixer](home-mixer/README.md) | Main service used to construct and serve the Home Timeline. Built on [product-mixer](product-mixer/README.md) |
| | [visibility-filters](visibilitylib/README.md) | Responsible for filtering Twitter content to support legal compliance, improve product quality, increase user trust, protect revenue through the use of hard-filtering, visible product treatments, and coarse-grained downranking. |
Expand All @@ -30,7 +30,7 @@ These are the main components of the Recommendation Algorithm included in this r
| | [product-mixer](product-mixer/README.md) | Software framework for building feeds of content. |
| | [twml](twml/README.md) | Legacy machine learning framework built on TensorFlow v1. |

We include Bazel BUILD files for most components, but not a top level BUILD or WORKSPACE file.
We include Bazel BUILD files for most components, but not a top-level BUILD or WORKSPACE file.

## Contributing

Expand Down