Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fixes for Volume Profile #320

Merged
merged 3 commits into from
Jul 2, 2021
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
58 changes: 33 additions & 25 deletions pandas_ta/volume/vp.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
# -*- coding: utf-8 -*-
from numpy import array_split
from pandas import concat, DataFrame
from numpy import mean
from pandas import cut, concat, DataFrame
from pandas_ta.utils import signed_series, verify_series


Expand All @@ -15,38 +16,45 @@ def vp(close, volume, width=None, **kwargs):
if close is None or volume is None: return

# Setup
signed_volume = signed_series(volume, initial=1)
pos_volume = signed_volume[signed_volume > 0] * volume
neg_volume = signed_volume[signed_volume < 0] * -volume
signed_price = signed_series(close, initial=1)
pos_volume = signed_price[signed_price > 0] * volume
neg_volume = signed_price[signed_price < 0] * -volume
vp = concat([close, pos_volume, neg_volume], axis=1)

close_col = f"{vp.columns[0]}"
high_price_col = f"high_{close_col}"
low_price_col = f"low_{close_col}"
mean_price_col = f"mean_{close_col}"
mid_price_col = f"mid_{close_col}"
close_col = 'close'
high_price_col = 'high_close'
low_price_col = 'low_close'
mean_price_col = 'mean_close'
pos_volume_col = 'pos_volume'
neg_volume_col = 'neg_volume'
total_volume_col = 'total_volume'

volume_col = f"{vp.columns[1]}"
pos_volume_col = f"pos_{volume_col}"
neg_volume_col = f"neg_{volume_col}"
total_volume_col = f"total_{volume_col}"
vp.columns = [close_col, pos_volume_col, neg_volume_col]

# sort_close: Sort by close before splitting into ranges. Default: False
# If False, it sorts by date index or chronological versus by price

if sort_close:
vp.sort_values(by=[close_col], inplace=True)

# Calculate Result
vp_ranges = array_split(vp, width)
result = ({
low_price_col: r[close_col].min(),
mean_price_col: r[close_col].mean(),
high_price_col: r[close_col].max(),
pos_volume_col: r[pos_volume_col].sum(),
neg_volume_col: r[neg_volume_col].sum(),
} for r in vp_ranges)
vpdf = DataFrame(result)
vp[mean_price_col] = vp[close_col]
vpdf = vp.groupby(cut(vp[close_col], width, include_lowest=True, precision=2)).agg({
mean_price_col: mean,
pos_volume_col: sum,
neg_volume_col: sum,
})
vpdf[low_price_col] = [x.left for x in vpdf.index]
vpdf[high_price_col] = [x.right for x in vpdf.index]
vpdf = vpdf.reset_index(drop=True)
vpdf = vpdf[[low_price_col, mean_price_col, high_price_col, pos_volume_col, neg_volume_col]]
else:
vp_ranges = array_split(vp, width)
result = ({
low_price_col: r[close_col].min(),
mean_price_col: r[close_col].mean(),
high_price_col: r[close_col].max(),
pos_volume_col: r[pos_volume_col].sum(),
neg_volume_col: r[neg_volume_col].sum(),
} for r in vp_ranges)
vpdf = DataFrame(result)
vpdf[total_volume_col] = vpdf[pos_volume_col] + vpdf[neg_volume_col]

# Handle fills
Expand Down