Skip to content

udaygirish/Panorama_Stitching

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Note: PLEASE EXECUTE ALL THE SCRIPTS IN THE INDIVIDUAL PHASE CODES FOLDER

Phase 1

P1:MyAutoPano - Phase 1 (Traditional Approach)

Course Project 1 for RBE549 - Computer Vision (Spring 2024)

Team Members: UdayGirish Maradana, Pradnya Sushil Shinde

Requirements

  1. CUDA Toolkit + GPU drivers

  2. Pytorch

  3. Numpy

  4. Matplotlib

  5. Opencv

  6. Scikit-Image

Implementation

  1. To stitch a given set of images, run the following:
python3 Wrapper.py --NumFeatures <number_of_features> --InputPath <path_to_data> --ClearResults <Yes/No> 

Summary:

Stitches a given set of images (Train/Test) with a procedural flow of: Corner Detection, Adaptive Non Maximal Suppression, Feature Description, Feature Matching, Outlier Rejection using RANSAC, Image Warping and Blending

Saves the output of every procedure in the corresponding folders.

P1:MyAutoPano - Phase 2 (Deep Learning Approach)

Course Project 1 for RBE549 - Computer Vision (Spring 2024)

Team Members: UdayGirish Maradana, Pradnya Sushil Shinde

Requirements

  1. CUDA Toolkit + GPU drivers

  2. Pytorch

  3. Numpy

  4. Matplotlib

  5. Opencv

  6. Scikit-Image

Implementation

  1. To train, run the following:
python3 Train.py --BasePath <base_path> --CheckPointPath <checkpoint_path> --ModelType <model_type> --NumEpochs <num_epochs> --DivTrain <div_train> --MiniBatchSize <minibatchsize> --LoadCheckPoint <0/1> --LogsPath <log_path>

Trains the model with Supervised or Unsupervised approach and given parameters and saves the corresponding checkpoints.

  1. To test, run the following:
python3 Wrapper.py --DataSet <data_Set> --ModelType <model_type> --PathToData <path_to_data> --ImageSelection <image_selection> --ImageNum <image_num> --ImageCount <image_count>

Tests the model for Train, Val or Test Datasets by loading the checkpoints of selected model type (Supervised or Unsupervised) and saves the image outputs in respective folders.

About

RBE 595 (Computer Vision) - WPI Coursework

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages