Course Project 1 for RBE549 - Computer Vision (Spring 2024)
Team Members: UdayGirish Maradana, Pradnya Sushil Shinde
-
CUDA Toolkit + GPU drivers
-
Pytorch
-
Numpy
-
Matplotlib
-
Opencv
-
Scikit-Image
- To stitch a given set of images, run the following:
python3 Wrapper.py --NumFeatures <number_of_features> --InputPath <path_to_data> --ClearResults <Yes/No>
Summary:
Stitches a given set of images (Train/Test) with a procedural flow of: Corner Detection, Adaptive Non Maximal Suppression, Feature Description, Feature Matching, Outlier Rejection using RANSAC, Image Warping and Blending
Saves the output of every procedure in the corresponding folders.
Course Project 1 for RBE549 - Computer Vision (Spring 2024)
Team Members: UdayGirish Maradana, Pradnya Sushil Shinde
-
CUDA Toolkit + GPU drivers
-
Pytorch
-
Numpy
-
Matplotlib
-
Opencv
-
Scikit-Image
- To train, run the following:
python3 Train.py --BasePath <base_path> --CheckPointPath <checkpoint_path> --ModelType <model_type> --NumEpochs <num_epochs> --DivTrain <div_train> --MiniBatchSize <minibatchsize> --LoadCheckPoint <0/1> --LogsPath <log_path>
Trains the model with Supervised or Unsupervised approach and given parameters and saves the corresponding checkpoints.
- To test, run the following:
python3 Wrapper.py --DataSet <data_Set> --ModelType <model_type> --PathToData <path_to_data> --ImageSelection <image_selection> --ImageNum <image_num> --ImageCount <image_count>
Tests the model for Train, Val or Test Datasets by loading the checkpoints of selected model type (Supervised or Unsupervised) and saves the image outputs in respective folders.