-
Notifications
You must be signed in to change notification settings - Fork 9
Static Models
Seid Muhie Yimam edited this page Nov 14, 2021
·
4 revisions
In this section, we will present the different static semantic models or word embedding representations we have built for Amharic
The Amharic word2Vec model is available here
To use the model, first download the model
wget http://ltdata1.informatik.uni-hamburg.de/amharic/models/word2vec/amharic-word2vec-300D.gz
Or use any other tool. Once the amharic-word2vec-300D.gz
model is downloaded, run the following code
import gensim
model = gensim.models.KeyedVectors.load_word2vec_format('PATH_TO/amharic-word2vec-300D.gz', binary=False)
model.most_similar('በሬ')
You should get results as follows
The Amharic fastText model is available here
To use the model, first download the model
wget http://ltdata1.informatik.uni-hamburg.de/amharic/models/fasttext/amharic-fasttext-300D.gz
Or use any other tool. Once the amharic-fasttext-300D.gz
model is downloaded, run the following code
import gensim
model = gensim.models.KeyedVectors.load_word2vec_format('PATH_TO/amharic-fasttext-300D.gz', binary=False)
model.most_similar('በሬ')