Skip to content

Commit

Permalink
Add SPPF() layer (#4420)
Browse files Browse the repository at this point in the history
* Add `SPPF()` layer

* Cleanup

* Add credit
  • Loading branch information
glenn-jocher authored Aug 15, 2021
1 parent 24bea5e commit 01cdb76
Show file tree
Hide file tree
Showing 2 changed files with 25 additions and 5 deletions.
20 changes: 19 additions & 1 deletion models/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -161,7 +161,7 @@ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):


class SPP(nn.Module):
# Spatial pyramid pooling layer used in YOLOv3-SPP
# Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
def __init__(self, c1, c2, k=(5, 9, 13)):
super().__init__()
c_ = c1 // 2 # hidden channels
Expand All @@ -176,6 +176,24 @@ def forward(self, x):
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))


class SPPF(nn.Module):
# Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
super().__init__()
c_ = c1 // 2 # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_ * 4, c2, 1, 1)
self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

def forward(self, x):
x = self.cv1(x)
with warnings.catch_warnings():
warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
y1 = self.m(x)
y2 = self.m(y1)
return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))


class Focus(nn.Module):
# Focus wh information into c-space
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
Expand Down
10 changes: 6 additions & 4 deletions models/yolo.py
Original file line number Diff line number Diff line change
Expand Up @@ -237,8 +237,8 @@ def parse_model(d, ch): # model_dict, input_channels(3)
pass

n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP,
C3, C3TR, C3SPP, C3Ghost]:
if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
BottleneckCSP, C3, C3TR, C3SPP, C3Ghost]:
c1, c2 = ch[f], args[0]
if c2 != no: # if not output
c2 = make_divisible(c2 * gw, 8)
Expand Down Expand Up @@ -279,6 +279,7 @@ def parse_model(d, ch): # model_dict, input_channels(3)
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--profile', action='store_true', help='profile model speed')
opt = parser.parse_args()
opt.cfg = check_file(opt.cfg) # check file
set_logging()
Expand All @@ -289,8 +290,9 @@ def parse_model(d, ch): # model_dict, input_channels(3)
model.train()

# Profile
# img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 320, 320).to(device)
# y = model(img, profile=True)
if opt.profile:
img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
y = model(img, profile=True)

# Tensorboard (not working https://github.com/ultralytics/yolov5/issues/2898)
# from torch.utils.tensorboard import SummaryWriter
Expand Down

0 comments on commit 01cdb76

Please sign in to comment.