Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Refactor train.py and val.py loggers #4137

Merged
merged 27 commits into from
Jul 24, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
87 changes: 21 additions & 66 deletions train.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,6 @@
import random
import sys
import time
import warnings
from copy import deepcopy
from pathlib import Path
from threading import Thread
Expand All @@ -24,7 +23,6 @@
from torch.cuda import amp
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import Adam, SGD, lr_scheduler
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm

FILE = Path(__file__).absolute()
Expand All @@ -42,8 +40,9 @@
from utils.loss import ComputeLoss
from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, de_parallel
from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume
from utils.loggers.wandb.wandb_utils import check_wandb_resume
from utils.metrics import fitness
from utils.loggers import Loggers

LOGGER = logging.getLogger(__name__)
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
Expand Down Expand Up @@ -76,37 +75,23 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
with open(save_dir / 'opt.yaml', 'w') as f:
yaml.safe_dump(vars(opt), f, sort_keys=False)

# Configure
# Config
plots = not evolve # create plots
cuda = device.type != 'cpu'
init_seeds(1 + RANK)
with open(data) as f:
data_dict = yaml.safe_load(f) # data dict

# Loggers
loggers = {'wandb': None, 'tb': None} # loggers dict
if RANK in [-1, 0]:
# TensorBoard
if plots:
prefix = colorstr('tensorboard: ')
LOGGER.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/")
loggers['tb'] = SummaryWriter(str(save_dir))

# W&B
opt.hyp = hyp # add hyperparameters
run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
run_id = run_id if opt.resume else None # start fresh run if transfer learning
wandb_logger = WandbLogger(opt, save_dir.stem, run_id, data_dict)
loggers['wandb'] = wandb_logger.wandb
if loggers['wandb']:
data_dict = wandb_logger.data_dict
weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp # may update values if resuming

nc = 1 if single_cls else int(data_dict['nc']) # number of classes
names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' # check
is_coco = data.endswith('coco.yaml') and nc == 80 # COCO dataset

# Loggers
if RANK in [-1, 0]:
loggers = Loggers(save_dir, results_file, weights, opt, hyp, data_dict, LOGGER).start() # loggers dict
if loggers.wandb and resume:
weights, epochs, hyp, data_dict = opt.weights, opt.epochs, opt.hyp, loggers.wandb.data_dict

# Model
pretrained = weights.endswith('.pt')
if pretrained:
Expand Down Expand Up @@ -351,30 +336,24 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
pbar.set_description(s)

# Plot
if plots and ni < 3:
f = save_dir / f'train_batch{ni}.jpg' # filename
Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
if loggers['tb'] and ni == 0: # TensorBoard
with warnings.catch_warnings():
warnings.simplefilter('ignore') # suppress jit trace warning
loggers['tb'].add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), [])
elif plots and ni == 10 and loggers['wandb']:
wandb_logger.log({'Mosaics': [loggers['wandb'].Image(str(x), caption=x.name) for x in
save_dir.glob('train*.jpg') if x.exists()]})
if plots:
if ni < 3:
f = save_dir / f'train_batch{ni}.jpg' # filename
Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
loggers.on_train_batch_end(ni, model, imgs)

# end batch ------------------------------------------------------------------------------------------------

# Scheduler
lr = [x['lr'] for x in optimizer.param_groups] # for loggers
scheduler.step()

# DDP process 0 or single-GPU
if RANK in [-1, 0]:
# mAP
loggers.on_train_epoch_end(epoch)
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
final_epoch = epoch + 1 == epochs
if not noval or final_epoch: # Calculate mAP
wandb_logger.current_epoch = epoch + 1
results, maps, _ = val.run(data_dict,
batch_size=batch_size // WORLD_SIZE * 2,
imgsz=imgsz,
Expand All @@ -385,29 +364,14 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
save_json=is_coco and final_epoch,
verbose=nc < 50 and final_epoch,
plots=plots and final_epoch,
wandb_logger=wandb_logger,
loggers=loggers,
compute_loss=compute_loss)

# Write
with open(results_file, 'a') as f:
f.write(s + '%10.4g' * 7 % results + '\n') # append metrics, val_loss

# Log
tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
'x/lr0', 'x/lr1', 'x/lr2'] # params
for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
if loggers['tb']:
loggers['tb'].add_scalar(tag, x, epoch) # TensorBoard
if loggers['wandb']:
wandb_logger.log({tag: x}) # W&B

# Update best mAP
fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
if fi > best_fitness:
best_fitness = fi
wandb_logger.end_epoch(best_result=best_fitness == fi)
loggers.on_train_val_end(mloss, results, lr, epoch, s, best_fitness, fi)

# Save model
if (not nosave) or (final_epoch and not evolve): # if save
Expand All @@ -418,27 +382,21 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
'ema': deepcopy(ema.ema).half(),
'updates': ema.updates,
'optimizer': optimizer.state_dict(),
'wandb_id': wandb_logger.wandb_run.id if loggers['wandb'] else None}
'wandb_id': loggers.wandb.wandb_run.id if loggers.wandb else None}

# Save last, best and delete
torch.save(ckpt, last)
if best_fitness == fi:
torch.save(ckpt, best)
if loggers['wandb']:
if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1:
wandb_logger.log_model(last.parent, opt, epoch, fi, best_model=best_fitness == fi)
del ckpt
loggers.on_model_save(last, epoch, final_epoch, best_fitness, fi)

# end epoch ----------------------------------------------------------------------------------------------------
# end training -----------------------------------------------------------------------------------------------------
if RANK in [-1, 0]:
LOGGER.info(f'{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.\n')
if plots:
plot_results(save_dir=save_dir) # save as results.png
if loggers['wandb']:
files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
wandb_logger.log({"Results": [loggers['wandb'].Image(str(save_dir / f), caption=f) for f in files
if (save_dir / f).exists()]})

if not evolve:
if is_coco: # COCO dataset
Expand All @@ -458,11 +416,8 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
for f in last, best:
if f.exists():
strip_optimizer(f) # strip optimizers
if loggers['wandb']: # Log the stripped model
loggers['wandb'].log_artifact(str(best if best.exists() else last), type='model',
name='run_' + wandb_logger.wandb_run.id + '_model',
aliases=['latest', 'best', 'stripped'])
wandb_logger.finish_run()

loggers.on_train_end(last, best)

torch.cuda.empty_cache()
return results
Expand Down
129 changes: 129 additions & 0 deletions utils/loggers/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,129 @@
# YOLOv5 experiment logging utils

import warnings

import torch
from torch.utils.tensorboard import SummaryWriter

from utils.general import colorstr, emojis
from utils.loggers.wandb.wandb_utils import WandbLogger
from utils.torch_utils import de_parallel

LOGGERS = ('txt', 'tb', 'wandb') # text-file, TensorBoard, Weights & Biases

try:
import wandb

assert hasattr(wandb, '__version__') # verify package import not local dir
except (ImportError, AssertionError):
wandb = None


class Loggers():
# YOLOv5 Loggers class
def __init__(self, save_dir=None, results_file=None, weights=None, opt=None, hyp=None,
data_dict=None, logger=None, include=LOGGERS):
self.save_dir = save_dir
self.results_file = results_file
self.weights = weights
self.opt = opt
self.hyp = hyp
self.data_dict = data_dict
self.logger = logger # for printing results to console
self.include = include
for k in LOGGERS:
setattr(self, k, None) # init empty logger dictionary

def start(self):
self.txt = True # always log to txt

# Message
try:
import wandb
except ImportError:
prefix = colorstr('Weights & Biases: ')
s = f"{prefix}run 'pip install wandb' to automatically track and visualize YOLOv5 πŸš€ runs (RECOMMENDED)"
print(emojis(s))

# TensorBoard
s = self.save_dir
if 'tb' in self.include and not self.opt.evolve:
prefix = colorstr('TensorBoard: ')
self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/")
self.tb = SummaryWriter(str(s))

# W&B
try:
assert 'wandb' in self.include and wandb
run_id = torch.load(self.weights).get('wandb_id') if self.opt.resume else None
self.opt.hyp = self.hyp # add hyperparameters
self.wandb = WandbLogger(self.opt, s.stem, run_id, self.data_dict)
except:
self.wandb = None

return self

def on_train_batch_end(self, ni, model, imgs):
# Callback runs on train batch end
if ni == 0:
with warnings.catch_warnings():
warnings.simplefilter('ignore') # suppress jit trace warning
self.tb.add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), [])
if self.wandb and ni == 10:
files = sorted(self.save_dir.glob('train*.jpg'))
self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]})

def on_train_epoch_end(self, epoch):
# Callback runs on train epoch end
if self.wandb:
self.wandb.current_epoch = epoch + 1

def on_val_batch_end(self, pred, predn, path, names, im):
# Callback runs on train batch end
if self.wandb:
self.wandb.val_one_image(pred, predn, path, names, im)

def on_val_end(self):
# Callback runs on val end
if self.wandb:
files = sorted(self.save_dir.glob('val*.jpg'))
self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]})

def on_train_val_end(self, mloss, results, lr, epoch, s, best_fitness, fi):
# Callback runs on validation end during training
vals = list(mloss[:-1]) + list(results) + lr
tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
'x/lr0', 'x/lr1', 'x/lr2'] # params
if self.txt:
with open(self.results_file, 'a') as f:
f.write(s + '%10.4g' * 7 % results + '\n') # append metrics, val_loss
if self.tb:
for x, tag in zip(vals, tags):
self.tb.add_scalar(tag, x, epoch) # TensorBoard
if self.wandb:
self.wandb.log({k: v for k, v in zip(tags, vals)})
self.wandb.end_epoch(best_result=best_fitness == fi)

def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
# Callback runs on model save event
if self.wandb:
if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1:
self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)

def on_train_end(self, last, best):
# Callback runs on training end
files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()] # filter
if self.wandb:
wandb.log({"Results": [wandb.Image(str(f), caption=f.name) for f in files]})
wandb.log_artifact(str(best if best.exists() else last), type='model',
name='run_' + self.wandb.wandb_run.id + '_model',
aliases=['latest', 'best', 'stripped'])
self.wandb.finish_run()

def log_images(self, paths):
# Log images
if self.wandb:
self.wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in paths]})
File renamed without changes.
Original file line number Diff line number Diff line change
@@ -1,12 +1,12 @@
import sys
from pathlib import Path

import wandb

FILE = Path(__file__).absolute()
sys.path.append(FILE.parents[2].as_posix()) # add utils/ to path

from train import train, parse_opt
import test
from utils.general import increment_path
from utils.torch_utils import select_device

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@
# You can use grid, bayesian and hyperopt search strategy
# For more info on configuring sweeps visit - https://docs.wandb.ai/guides/sweeps/configuration

program: utils/wandb_logging/sweep.py
program: utils/loggers/wandb/sweep.py
method: random
metric:
name: metrics/mAP_0.5
Expand Down
Loading