Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Increase ar_thr from 20 to 100 for better detection on slender (high aspect ratio) objects #5556

Merged
merged 17 commits into from
Dec 15, 2021

Conversation

MrinalJain17
Copy link
Contributor

@MrinalJain17 MrinalJain17 commented Nov 8, 2021

FIxes #2521

Being able to customize aspect ratio threshold (ar_thr) is quite important for using YOLOv5 with any custom dataset having a different distribution of bounding boxes than COCO.

There have been several issues in the past indicating that it's often necessary to modify the default value of 20 for ar_thr. For instance: #4030 #2070 #2521

The workaround is to manually edit the default value, but it's not a viable solution if the user intends to keep up to date with the origin Yolov5 repository (risking git merge errors).

This PR aims to make ar_thr available as a hyperparameter, and therefore customizable via hyp.yaml files.

@glenn-jocher I've drafted the PR based on my understanding on when and where box_candidates() is used within the code base. Let me know if I missed something, or if this needs more work.

EDIT: There was a similar PR #2869 to fix this issue. It made all the parameters of box_candidates() available as hyperparams.

🛠️ PR Summary

Made with ❤️ by Ultralytics Actions

🌟 Summary

Enhanced bounding box filtering criteria in data augmentation.

📊 Key Changes

  • The ar_thr (aspect ratio threshold) parameter in box_candidates function has been changed from 20 to 100.

🎯 Purpose & Impact

  • 🎭 Purpose: This adjustment fine-tunes the data augmentation process, allowing for more varied aspect ratios of bounding boxes.
  • 🕹️ Impact: Could lead to better generalization of the YOLOv5 model by effectively training on a wider range of object shapes, potentially improving detection performance in real-world scenarios.

@glenn-jocher
Copy link
Member

@MrinalJain17 thanks for the PR! Yes it's true this is an open issue. I'm not sure adding additional hyps is the best idea though. How about one of these two options:

  • Increase default value, i.e. 20 -> 40, or 20 -> 80. This will allow more use cases to pass without encountering limits.
  • Auto-solve a value for each dataset. Load all annotations on trainloader init, find max AR, assign to self.ar_thr, use this value.

@MrinalJain17
Copy link
Contributor Author

Auto-solve a value for each dataset. Load all annotations on trainloader init, find max AR, assign to self.ar_thr, use this value.

@glenn-jocher Option 2 seems much better to me, as opposed to hard-coding a value. I'll update the PR soon.

@glenn-jocher
Copy link
Member

@MrinalJain17 yes option 2 sounds pretty cool.

But wait, maybe this is not a good idea. In this workflow, in a dataset with many low AR objects, i.e. VOC, where things are mostly square, our augmented mosaic loader will crop these annotations randomly, and this candidate criteria is in place as a threshold to help reject unwanted crops. i.e. if a vehicle is 90% cropped in one direction it's AR will multiply by 10, exceeding the un-augmented dataset AR stats, but we may still want to retain this cropped vehicle for training.

It's not clear what the best route is. VOC is easily trainable, we could run a study training it at various ar_thr and simply increase the default threshold.

@MrinalJain17
Copy link
Contributor Author

@glenn-jocher That's an interesting point.

Although, I'd still argue that having a fixed ar_thr based on experiments from one specific dataset is not generalizable.

My proposal would be to have one of the following:

  1. If we decide to hard-code ar_thr, then the user should have some way to customize it. Either through hyp.yaml files or as an argument to train.py (or any other alternative which does not involve manually modifying the function definition of box_candidates()).
    • The downside as you indicated earlier is one extra (hyper)parameter.
  2. Or, we implement the auto-solve approach.
    • The downside here would be (potentially) unintended behavior with mosaic.

My point here is that the user manually modifying the threshold is problematic (and is necessary quite often it seems). In fact, I'm working on something right now where one of the object categories in my dataset had a non-existent recall, and it was because it had really high aspect ratios (like 100) 😅 . At the moment I've changed the default threshold, but it's not a feasible solution if I want to keep up to date with the commits in the YOLOv5 project.

Let's assume that we do end up increasing ar_thr to say 100. But there could always be use cases that have objects with even higher aspect ratios - especially for those working with custom datasets.

If you have thoughts on any other way to give users this flexibility (and yet not have any side-effects on existing datasets or congest the code base), I'd be willing to work on a PR.

@MrinalJain17
Copy link
Contributor Author

@MrinalJain17 yes option 2 sounds pretty cool.

But wait, maybe this is not a good idea. In this workflow, in a dataset with many low AR objects, i.e. VOC, where things are mostly square, our augmented mosaic loader will crop these annotations randomly, and this candidate criteria is in place as a threshold to help reject unwanted crops. i.e. if a vehicle is 90% cropped in one direction it's AR will multiply by 10, exceeding the un-augmented dataset AR stats, but we may still want to retain this cropped vehicle for training.

It's not clear what the best route is. VOC is easily trainable, we could run a study training it at various ar_thr and simply increase the default threshold.

@glenn-jocher How about this - We add a flag (like auto_ar_thr) to the training script. And perform the auto solve operation only if that flag is enabled. Otherwise use the default value of 20.

@glenn-jocher
Copy link
Member

glenn-jocher commented Nov 8, 2021

@MrinalJain17 maybe we could solve for dataset_max_ar, and then ar_thr = max(dataset_max_ar, 20). This would satisfy your ar 100 dataset, while also retaining a high 20 ar when square objects get cropped during augmentation in datasets like VOC.

Or maybe we should just drop AR thresholds (or increase beyond the point of meaningfulness) for training data. The main purpose there is to avoid errors in labels (i.e. zero-width labels) rather than to filter correct labels, but also to align the labels with what the model can actually predict, since YOLO models are not set up to detect very high AR objects with their default convolution kernals.

YOLO relies on square 1x1 and 3x3 convolutions. If you have these sorts of objects you may be better suited with alternative kernel structures, i.e. 1x5 and 5x1, or longer kernels perhaps in place of, or in addition to the existing 3x3 kernels. You'd have to experiment to see what works best there.

@MrinalJain17
Copy link
Contributor Author

@glenn-jocher Thank you for the clarification. I definitely have a better understanding of why ar_thr is there in the first place.

I also liked your idea to compute a dataset_max_ar, and I've updated the PR accordingly. Let me know what you think.

@MrinalJain17 MrinalJain17 changed the title Making ar_thr available as a hyperparameter Making ar_thr adaptive to the bounding box distribution of the dataset Nov 9, 2021
@MrinalJain17 MrinalJain17 changed the title Making ar_thr adaptive to the bounding box distribution of the dataset Making ar_thr adaptive to the bbox aspect ratio distribution of the dataset Nov 9, 2021
@MrinalJain17
Copy link
Contributor Author

@glenn-jocher Any suggestions/recommendations for this?

@glenn-jocher
Copy link
Member

@MrinalJain17 thanks for the updates! The dataset calculation line is succinct, nice work.

I'm going to run a simple experiment though, since it's been a long time since we evaluated the effect of this parameter. Hopefully the simplest solution is just to raise this threshold. Results should log to https://wandb.ai/glenn-jocher/test_VOC_ar_thr

# VOC
import os
from itertools import repeat

for b, m, ar in zip(repeat(64), repeat('yolov5m6'), [2, 4, 8, 16, 32, 64, 128, 256]):  # zip(batch, model, ar_thr)
  os. environ['AR_THR'] = str(ar)
  !python train.py --batch {b} --weights {m}.pt --data VOC.yaml --epochs 50 --cache --img 512 --nosave --hyp hyp.finetune.yaml --project test_VOC_ar_thr --name {m}-{ar}

with

import os 

def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1, eps=1e-16):  # box1(4,n), box2(4,n)
    # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
    ar_thr = int(os.getenv('AR_THR'))
    w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
    w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
    ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps))  # aspect ratio
    return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr)  # candidates

@glenn-jocher
Copy link
Member

@MrinalJain17 AR study on VOC is finished. Results shown W&B here:
https://wandb.ai/glenn-jocher/test_VOC_ar_thr?workspace=user-glenn-jocher

Results mainly show that very low AR thresholds like 4, 8 perform poorly, as expected. Thresholds above these values perform similarly.
Screenshot 2021-11-12 at 14 40 20

@MrinalJain17
Copy link
Contributor Author

MrinalJain17 commented Nov 12, 2021

@glenn-jocher Great to see the results. Thanks for conducting those experiments. Really appreciate your efforts. 😄

Hope to have fix merged soon. Rebased to master

@glenn-jocher
Copy link
Member

@MrinalJain17 found a small bug in PR. The AR computation is in normalized-space here, which will only provide a correct result if the image is square. The proper way is to compute AR in pixel-space (multiply w and h by image width and image height prior to computing AR).

@MrinalJain17
Copy link
Contributor Author

MrinalJain17 commented Nov 14, 2021

Ooh, that's a sneaky bug. Nice catch!

I've updated the PR to fix it. @glenn-jocher

Rebased to master

@MrinalJain17
Copy link
Contributor Author

@glenn-jocher Any new updates on this?

PS: Apologies for nagging 😅

@MrinalJain17
Copy link
Contributor Author

MrinalJain17 commented Nov 22, 2021

@glenn-jocher Seems like this PR can be merged. Any other changes that you would recommend?

EDIT: Rebased to master.

@MrinalJain17
Copy link
Contributor Author

Hey @glenn-jocher Do you have any other suggestions/thoughts for this PR? I know the ar computation is not as compact after the fix for non-square images, but it seems stable now.

@MrinalJain17
Copy link
Contributor Author

Hi @glenn-jocher

Still waiting for your approval on this PR. Or perhaps any changes?

@MrinalJain17
Copy link
Contributor Author

Hey @glenn-jocher I was wondering if this PR is still under consideration. I can close it out otherwise. Hopefully there be some other fix to make Yolov5 work with slender objects better.

@glenn-jocher
Copy link
Member

@MrinalJain17 I think probably based on the earlier study we might simply want to increase the base AR threshold, from 20 probably to 100, which should cover almost all the use cases I can think of.

We're trying to strike the right compromise between complication and capability, and I'll be the first to admit the train/val loader is already quite complicated.

What do you think?

@glenn-jocher
Copy link
Member

glenn-jocher commented Dec 14, 2021

@MrinalJain17 also I don't know if we want to set the threshold based on edge cases, i.e. if there are a few bad outliers in the data that show extreme ARs we may not want to use them as the basis for deciding the threshold.

Typically on a noisy (gaussian or otherwise) distribution you might clip the tails at say 3-sigma or 6-sigma, but of course this just adds additional complications and an additional parameter.

@MrinalJain17
Copy link
Contributor Author

@MrinalJain17 I think probably based on the earlier study we might simply want to increase the base AR threshold, from 20 probably to 100, which should cover almost all the use cases I can think of.

We're trying to strike the right compromise between complication and capability, and I'll be the first to admit the train/val loader is already quite complicated.

What do you think?

@glenn-jocher Agreed, based on the experiment you conducted earlier, it seems like increasing the threshold would be the most straightforward (and safe) way.

And like you mentioned, using the mean + 3/4 SD could be a more robust solution, but probably not worth the added complexity.

I can update the PR and set ar_thr to 100.

@MrinalJain17 MrinalJain17 changed the title Making ar_thr adaptive to the bbox aspect ratio distribution of the dataset Increase ar_thr from 20 to 100 for better detection on slender (high aspect ratio) objects Dec 14, 2021
@glenn-jocher glenn-jocher merged commit b7d18f3 into ultralytics:master Dec 15, 2021
@glenn-jocher
Copy link
Member

@MrinalJain17 PR is merged. Thank you for your contributions to YOLOv5 🚀 and Vision AI ⭐

Thanks for all the effort on this! This will surely help future users get better results on a wider variety of datasets.

bfineran added a commit to neuralmagic/yolov5 that referenced this pull request Apr 8, 2022
* Fix TensorRT potential unordered binding addresses (ultralytics#5826)

* feat: change file suffix in pythonic way

* fix: enforce binding addresses order

* fix: enforce binding addresses order

* Handle non-TTY `wandb.errors.UsageError` (ultralytics#5839)

* `try: except (..., wandb.errors.UsageError)`

* bug fix

* Avoid inplace modifying`imgs` in `LoadStreams` (ultralytics#5850)

When OpenCV retrieving image fail, original code would modify source images **inplace**, which may result in plotting bounding boxes on a black image. That is, before inference, source image `im0s[i]` is OK, but after inference before `Process predictions`,  `im0s[i]` may have been changed.

* Update `LoadImages` `ret_val=False` handling (ultralytics#5852)

Video errors may occur.

* Update val.py (ultralytics#5838)

* Update val.py

Solving Non-ASCII character '\xf0' error during runtime

* Update val.py

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Update TorchScript suffix to `*.torchscript` (ultralytics#5856)

* Add `--workers 8` argument to val.py (ultralytics#5857)

* Update val.py

Add an option to choose number of workers if not called by train.py

* Update comment

* 120 char line width

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Update `plot_lr_scheduler()` (ultralytics#5864)

shallow copy modify originals

* Update `nl` after `cutout()` (ultralytics#5873)

* `AutoShape()` models as `DetectMultiBackend()` instances (ultralytics#5845)

* Update AutoShape()

* autodownload ONNX

* Cleanup

* Finish updates

* Add Usage

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* fix device

* Update hubconf.py

* Update common.py

* smart param selection

* autodownload all formats

* autopad only pytorch models

* new_shape edits

* stride tensor fix

* Cleanup

* Single-command multiple-model export (ultralytics#5882)

* Export multiple models in series

Export multiple models in series by adding additional `*.pt` files to the `--weights` argument, i.e.:

```bash
python export.py --include tflite --weights yolov5n.pt  # export 1 model
python export.py --include tflite --weights yolov5n.pt yolov5s.pt yolov5m.pt yolov5l.pt yolov5x.pt  # export 5 models
```

* Update export.py

* Update README.md

* `Detections().tolist()` explicit argument fix (ultralytics#5907)

debugged for missigned Detections attributes

* Update wandb_utils.py (ultralytics#5908)

* Add *.engine (TensorRT extensions) to .gitignore (ultralytics#5911)

* Add *.engine (TensorRT extensions) to .gitignore

* Update .dockerignore

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Add ONNX inference providers (ultralytics#5918)

* Add ONNX inference providers

Fix for ultralytics#5916

* Update common.py

* Add hardware checks to `notebook_init()` (ultralytics#5919)

* Update notebook

* Update notebook

* update string

* update string

* Updates

* Updates

* Updates

* check both ipython and psutil

* remove sample_data if is_colab

* cleanup

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Revert "Update `plot_lr_scheduler()` (ultralytics#5864)" (ultralytics#5920)

This reverts commit 360eec6.

* Absolute '/content/sample_data' (ultralytics#5922)

* Default PyTorch Hub to `autocast(False)` (ultralytics#5926)

* Fix ONNX opset inconsistency with parseargs and run args (ultralytics#5937)

* Make `select_device()` robust to `batch_size=-1` (ultralytics#5940)

* Find out a bug. When set batch_size = -1 to use the autobatch.

reproduce:

* Fix type conflict

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* fix .gitignore not tracking existing folders (ultralytics#5946)

* fix .gitignore not tracking existing folders

fix .gitignore so that the files that are in the repository are actually being tracked.

Everything in the data/ folder is ignored, which also means the subdirectories are ignored. Fix so that the subdirectories and their contents are still tracked.

* Remove data/trainings

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Update `strip_optimizer()` (ultralytics#5949)

Replace 'training_result' with 'best_fitness' in strip_optimizer() to match key with ckpt from train.py

* Add nms and agnostic nms to export.py (ultralytics#5938)

* add nms and agnostic nms to export.py

* fix agnostic implies nms

* reorder args to group TF args

* PEP8 120 char

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Refactor NUM_THREADS (ultralytics#5954)

* Fix Detections class `tolist()` method (ultralytics#5945)

* Fix tolist() to add the file for each Detection

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Fix PEP8 requirement for 2 spaces before an inline comment

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Cleanup

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Fix `imgsz` bug (ultralytics#5948)

* fix imgsz bug

* Update detect.py

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* `pretrained=False` fix (ultralytics#5966)

* `pretriained=False` fix

Fix for ultralytics#5964

* CI speed improvement

* make parameter ignore epochs (ultralytics#5972)

* make parameter ignore epochs

ignore epochs functionality add to prevent spikes at the beginning when fitness spikes and decreases after.
Discussed at ultralytics#5971

* Update train.py

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* YOLOv5s6 params and FLOPs fix (ultralytics#5977)

* Update callbacks.py with `__init__()` (ultralytics#5979)

Add __init__() function.

* Increase `ar_thr` from 20 to 100 for better detection on slender (high aspect ratio) objects (ultralytics#5556)

* Making `ar_thr` available as a hyperparameter

* Disabling ar_thr as hyperparameter and computing from the dataset instead

* Fixing bug in ar_thr computation

* Fix `ar_thr` to 100

* Allow `--weights URL` (ultralytics#5991)

* Recommend `jar xf file.zip` for zips (ultralytics#5993)

* *.torchscript inference `self.jit` fix (ultralytics#6007)

* Check TensorRT>=8.0.0 version (ultralytics#6021)

* Check TensorRT>=8.0.0 version

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Multi-layer capable `--freeze` argument (ultralytics#6019)

* support specfiy multiple frozen layers

* fix bug

* Cleanup Freeze section

* Cleanup argument

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* train -> val comment fix (ultralytics#6024)

* Add dataset source citations (ultralytics#6032)

* Kaggle `LOGGER` fix (ultralytics#6041)

* Simplify `set_logging()` indexing (ultralytics#6042)

* `--freeze` fix (ultralytics#6044)

Fix for ultralytics#6038

* OpenVINO Export (ultralytics#6057)

* OpenVINO export

* Remove timeout

* Add 3 files

* str

* Constrain opset to 12

* Default ONNX opset to 12

* Make dir

* Make dir

* Cleanup

* Cleanup

* check_requirements(('openvino-dev',))

* Reduce G/D/CIoU logic operations (ultralytics#6074)

Consider that the default value is CIOU,adjust the order of judgment could reduce the number of judgments.
And “elif CIoU:” didn't need 'if'.

Co-authored-by: 李杰 <360751194@qq.comqq.com>

* Init tensor directly on device (ultralytics#6068)

Slightly more efficient than .to(device)

* W&B: track batch size after autobatch (ultralytics#6039)

* track batch size after autobatch

* remove redundant import

* Update __init__.py

* Update __init__.py

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* W&B: Log best results after training ends (ultralytics#6120)

* log best.pt metrics at train end

* update

* Update __init__.py

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Log best results (ultralytics#6085)

* log best result in summary

* comment added

* add space for `flake8`

* log `best/epoch`

* fix `dimension` for epoch

ValueError: all the input arrays must have same number of dimensions

* log `best/` in `utils.logger.__init__`

* fix pre-commit

1. missing whitespace around operator
2.  over-indented

* Refactor/reduce G/C/D/IoU `if: else` statements (ultralytics#6087)

* Refactor the code to reduece else

* Update metrics.py

* Cleanup

Co-authored-by: Cmos <gen.chen@ubisoft.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Add EdgeTPU support (ultralytics#3630)

* Add models/tf.py for TensorFlow and TFLite export

* Set auto=False for int8 calibration

* Update requirements.txt for TensorFlow and TFLite export

* Read anchors directly from PyTorch weights

* Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export

* Remove check_anchor_order, check_file, set_logging from import

* Reformat code and optimize imports

* Autodownload model and check cfg

* update --source path, img-size to 320, single output

* Adjust representative_dataset

* Put representative dataset in tfl_int8 block

* detect.py TF inference

* weights to string

* weights to string

* cleanup tf.py

* Add --dynamic-batch-size

* Add xywh normalization to reduce calibration error

* Update requirements.txt

TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error

* Fix imports

Move C3 from models.experimental to models.common

* Add models/tf.py for TensorFlow and TFLite export

* Set auto=False for int8 calibration

* Update requirements.txt for TensorFlow and TFLite export

* Read anchors directly from PyTorch weights

* Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export

* Remove check_anchor_order, check_file, set_logging from import

* Reformat code and optimize imports

* Autodownload model and check cfg

* update --source path, img-size to 320, single output

* Adjust representative_dataset

* detect.py TF inference

* Put representative dataset in tfl_int8 block

* weights to string

* weights to string

* cleanup tf.py

* Add --dynamic-batch-size

* Add xywh normalization to reduce calibration error

* Update requirements.txt

TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error

* Fix imports

Move C3 from models.experimental to models.common

* implement C3() and SiLU()

* Add TensorFlow and TFLite Detection

* Add --tfl-detect for TFLite Detection

* Add int8 quantized TFLite inference in detect.py

* Add --edgetpu for Edge TPU detection

* Fix --img-size to add rectangle TensorFlow and TFLite input

* Add --no-tf-nms to detect objects using models combined with TensorFlow NMS

* Fix --img-size list type input

* Update README.md

* Add Android project for TFLite inference

* Upgrade TensorFlow v2.3.1 -> v2.4.0

* Disable normalization of xywh

* Rewrite names init in detect.py

* Change input resolution 640 -> 320 on Android

* Disable NNAPI

* Update README.me --img 640 -> 320

* Update README.me for Edge TPU

* Update README.md

* Fix reshape dim to support dynamic batching

* Fix reshape dim to support dynamic batching

* Add epsilon argument in tf_BN, which is different between TF and PT

* Set stride to None if not using PyTorch, and do not warmup without PyTorch

* Add list support in check_img_size()

* Add list input support in detect.py

* sys.path.append('./') to run from yolov5/

* Add int8 quantization support for TensorFlow 2.5

* Add get_coco128.sh

* Remove --no-tfl-detect in models/tf.py (Use tf-android-tfl-detect branch for EdgeTPU)

* Update requirements.txt

* Replace torch.load() with attempt_load()

* Update requirements.txt

* Add --tf-raw-resize to set half_pixel_centers=False

* Remove android directory

* Update README.md

* Update README.md

* Add multiple OS support for EdgeTPU detection

* Fix export and detect

* Export 3 YOLO heads with Edge TPU models

* Remove xywh denormalization with Edge TPU models in detect.py

* Fix saved_model and pb detect error

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Fix pre-commit.ci failure

* Add edgetpu in export.py docstring

* Fix Edge TPU model detection exported by TF 2.7

* Add class names for TF/TFLite in DetectMultibackend

* Fix assignment with nl in TFLite Detection

* Add check when getting Edge TPU compiler version

* Add UTF-8 encoding in opening --data file for Windows

* Remove redundant TensorFlow import

* Add Edge TPU in export.py's docstring

* Add the detect layer in Edge TPU model conversion

* Default `dnn=False`

* Cleanup data.yaml loading

* Update detect.py

* Update val.py

* Comments and generalize data.yaml names

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: unknown <fangjiacong@ut.cn>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Enable AdamW optimizer (ultralytics#6152)

* Update export format docstrings (ultralytics#6151)

* Update export documentation

* Cleanup

* Update export.py

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update README.md

* Update README.md

* Update README.md

* Update train.py

* Update train.py

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Update greetings.yml (ultralytics#6165)

* [pre-commit.ci] pre-commit suggestions (ultralytics#6177)

updates:
- [github.com/pre-commit/pre-commit-hooks: v4.0.1 → v4.1.0](pre-commit/pre-commit-hooks@v4.0.1...v4.1.0)
- [github.com/asottile/pyupgrade: v2.23.1 → v2.31.0](asottile/pyupgrade@v2.23.1...v2.31.0)
- [github.com/PyCQA/isort: 5.9.3 → 5.10.1](PyCQA/isort@5.9.3...5.10.1)
- [github.com/PyCQA/flake8: 3.9.2 → 4.0.1](PyCQA/flake8@3.9.2...4.0.1)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Update NMS `max_wh=7680` for 8k images (ultralytics#6178)

* Add OpenVINO inference (ultralytics#6179)

* Ignore `*_openvino_model/` dir (ultralytics#6180)

* Global export format sort (ultralytics#6182)

* Global export sort

* Cleanup

* Fix TorchScript on mobile export (ultralytics#6183)

* fix export of TorchScript on mobile

* Cleanup

Co-authored-by: yinrong <yinrong@xiaomi.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* TensorRT 7 `anchor_grid` compatibility fix (ultralytics#6185)

* fix: TensorRT 7 incompatiable

* Add comment

* Add if: else and comment

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Add `tensorrt>=7.0.0` checks (ultralytics#6193)

* Add `tensorrt>=7.0.0` checks

* Update export.py

* Update common.py

* Update export.py

* Add CoreML inference (ultralytics#6195)

* Add Apple CoreML inference

* Cleanup

* Fix `nan`-robust stream FPS (ultralytics#6198)

Fix for Webcam stop working suddenly (Issue ultralytics#6197)

* Edge TPU compiler comment (ultralytics#6196)

* Edge TPU compiler comment

* 7 to 8 fix

* TFLite `--int8` 'flatbuffers==1.12' fix (ultralytics#6216)

* TFLite `--int8` 'flatbuffers==1.12' fix

Temporary workaround for TFLite INT8 export.

* Update export.py

* Update export.py

* TFLite `--int8` 'flatbuffers==1.12' fix 2 (ultralytics#6217)

* TFLite `--int8` 'flatbuffers==1.12' fix 2

Reorganizes ultralytics#6216 fix to update before `tensorflow` import so no restart required.

* Update export.py

* Add `edgetpu_compiler` checks (ultralytics#6218)

* Add `edgetpu_compiler` checks

* Update export.py

* Update export.py

* Update export.py

* Update export.py

* Update export.py

* Update export.py

* Attempt `edgetpu-compiler` autoinstall (ultralytics#6223)

* Attempt `edgetpu-compiler` autoinstall

Attempt to install edgetpu-compiler dependency if missing on Linux.

* Update export.py

* Update export.py

* Update README speed reproduction command (ultralytics#6228)

* Update P2-P7 `models/hub` variants (ultralytics#6230)

* Update p2-p7 `models/hub` variants

* Update common.py

* AutoAnchor camelcase corrections

* TensorRT 7 export fix (ultralytics#6235)

* Fix `cmd` string on `tfjs` export (ultralytics#6243)

* Fix cmd string on tfjs export

* Cleanup

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* TensorRT pip install

* Enable ONNX `--half` FP16 inference (ultralytics#6268)

* Enable ONNX ``--half` FP16 inference

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Update `export.py` with Detect, Validate usages (ultralytics#6280)

* Add `is_kaggle()` function (ultralytics#6285)

* Add `is_kaggle()` function

Return True if environment is Kaggle Notebook.

* Remove root loggers only if is_kaggle() == True

* Update general.py

* Fix `device` count check (ultralytics#6290)

* Fix device count check()

* Update torch_utils.py

* Update torch_utils.py

* Update hubconf.py

* Fixing bug multi-gpu training (ultralytics#6299)

* Fixing bug multi-gpu training

This solves this issue: ultralytics#6297 (comment)

* Update torch_utils.py for pep8

* `select_device()` cleanup (ultralytics#6302)

* `select_device()` cleanup

* Update torch_utils.py

* Update torch_utils.py

* Update torch_utils.py

* Update torch_utils.py

* Update torch_utils.py

* Fix `train.py` parameter groups desc error (ultralytics#6318)

* Fix `train.py` parameter groups desc error

* Cleanup

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Remove `dataset_stats()` autodownload capability (ultralytics#6303)

* Remove `dataset_stats()` autodownload capability

@kalenmike security update per Slack convo

* Update datasets.py

* Console corrupted -> corrupt (ultralytics#6338)

* Console corrupted -> corrupt 

Minor style changes.

* Update export.py

* TensorRT `assert im.device.type != 'cpu'` on export (ultralytics#6340)

* TensorRT `assert im.device.type != 'cpu'` on export

* Update export.py

* `export.py` return exported files/dirs (ultralytics#6343)

* `export.py` return exported files/dirs

* Path to str

* Created using Colaboratory

* `export.py` automatic `forward_export` (ultralytics#6352)

* `export.py` automatic `forward_export`

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* New environment variable `VERBOSE` (ultralytics#6353)

New environment variable `VERBOSE`

* Reuse `de_parallel()` rather than `is_parallel()` (ultralytics#6354)

* `DEVICE_COUNT` instead of `WORLD_SIZE` to calculate `nw` (ultralytics#6324)

* Flush callbacks when on `--evolve` (ultralytics#6374)

* log best.pt metrics at train end

* update

* Update __init__.py

* flush callbacks when using evolve

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* FROM nvcr.io/nvidia/pytorch:21.12-py3 (ultralytics#6377)

* FROM nvcr.io/nvidia/pytorch:21.10-py3 (ultralytics#6379)

21.12 generates dockerhub errors so rolling back to 21.10 with latest pytorch install. Not sure if this torch install will work on non-GPU dockerhub autobuild so this is an experiment.

* Add `albumentations` to Dockerfile (ultralytics#6392)

* Add `stop_training=False` flag to callbacks (ultralytics#6365)

* New flag 'stop_training' in util.callbacks.Callbacks class to prematurely stop training from callback handler

* Removed most of the new  checks, leaving only the one after calling 'on_train_batch_end'

* Cleanup

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Add `detect.py` GIF video inference (ultralytics#6410)

* Add detect.py GIF video inference

* Cleanup

* Update `greetings.yaml` email address (ultralytics#6412)

* Update `greetings.yaml` email address

* Update greetings.yml

* Rename logger from 'utils.logger' to 'yolov5' (ultralytics#6421)

* Gave a more explicit name to the logger

* Cleanup

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Prefer `tflite_runtime` for TFLite inference if installed (ultralytics#6406)

* import tflite_runtime if tensorflow not installed

* rename tflite to tfli

* Attempt tflite_runtime for all TFLite workflows

Also rename tfli to tfl

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Update workflows (ultralytics#6427)

* Workflow updates

* quotes fix

* best to weights fix

* Namespace `VERBOSE` env variable to `YOLOv5_VERBOSE` (ultralytics#6428)

* Verbose updates

* Verbose updates

* Add `*.asf` video support (ultralytics#6436)

* Revert "Remove `dataset_stats()` autodownload capability (ultralytics#6303)" (ultralytics#6442)

This reverts commit 3119b2f.

* Fix `select_device()` for Multi-GPU (ultralytics#6434)

* Fix `select_device()` for Multi-GPU

Possible fix for ultralytics#6431

* Update torch_utils.py

* Update torch_utils.py

* Update torch_utils.py

* Update torch_utils.py

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Fix2 `select_device()` for Multi-GPU (ultralytics#6461)

* Fix2 select_device() for Multi-GPU

* Cleanup

* Cleanup

* Simplify error message

* Improve assert

* Update torch_utils.py

* Add Product Hunt social media icon (ultralytics#6464)

* Social media icons update

* fix URL

* Update README.md

* Resolve dataset paths (ultralytics#6489)

* Simplify TF normalized to pixels (ultralytics#6494)

* Improved `export.py` usage examples (ultralytics#6495)

* Improved `export.py` usage examples

* Cleanup

* CoreML inference fix `list()` -> `sorted()` (ultralytics#6496)

* Suppress `torch.jit.TracerWarning` on export (ultralytics#6498)

* Suppress torch.jit.TracerWarning

TracerWarnings can be safely ignored.

* Cleanup

* Suppress export.run() TracerWarnings (ultralytics#6499)

Suppresses warnings when calling export.run() directly, not just CLI python export.py.

Also adds Requirements examples for CPU and GPU backends

* W&B: Remember batchsize on resuming (ultralytics#6512)

* log best.pt metrics at train end

* update

* Update __init__.py

* flush callbacks when using evolve

* remember batch size on resuming

* Update train.py

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Update hyp.scratch-high.yaml (ultralytics#6525)

Update `lrf: 0.1`, tested on YOLOv5x6 to 55.0 mAP@0.5:0.95, slightly higher than current.

* TODO issues exempt from stale action (ultralytics#6530)

* Update val_batch*.jpg for Chinese fonts (ultralytics#6526)

* Update plots for Chinese fonts

* make is_chinese() non-str safe

* Add global FONT

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update general.py

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Social icons after text (ultralytics#6473)

* Social icons after text

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update README.md

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Edge TPU compiler `sudo` fix (ultralytics#6531)

* Edge TPU compiler sudo fix

Allows for auto-install of Edge TPU compiler on non-sudo systems like the YOLOv5 Docker image.

@kalenmike

* Update export.py

* Update export.py

* Update export.py

* Edge TPU export 'list index out of range' fix (ultralytics#6533)

* Edge TPU `tf.lite.experimental.load_delegate` fix (ultralytics#6536)

* Edge TPU `tf.lite.experimental.load_delegate` fix

Fix attempt for ultralytics#6535

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Fixing minor multi-streaming issues with TensoRT engine (ultralytics#6504)

* Update batch-size in model.warmup() + indentation for logging inference results

* These changes are in response to PR comments

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Load checkpoint on CPU instead of on GPU (ultralytics#6516)

* Load checkpoint on CPU instead of on GPU

* refactor: simplify code

* Cleanup

* Update train.py

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* flake8: code meanings (ultralytics#6481)

* Fix 6 Flake8 issues (ultralytics#6541)

* F541

* F821

* F841

* E741

* E302

* E722

* Apply suggestions from code review

* Update general.py

* Update datasets.py

* Update export.py

* Update plots.py

* Update plots.py

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Edge TPU TF imports fix (ultralytics#6542)

* Edge TPU TF imports fix

Fix for ultralytics#6535 (comment)

* Update common.py

* Move trainloader functions to class methods (ultralytics#6559)

* Move trainloader functions to class methods

* results = ThreadPool(NUM_THREADS).imap(self.load_image, range(n))

* Cleanup

* Improved AutoBatch DDP error message (ultralytics#6568)

* Improved AutoBatch DDP error message

* Cleanup

* Fix zero-export handling with `if any(f):` (ultralytics#6569)

* Fix zero-export handling with `if any(f):`

Partial fix for ultralytics#6563

* Cleanup

* Fix `plot_labels()` colored histogram bug (ultralytics#6574)

* Fix `plot_labels()` colored histogram bug

* Cleanup

* Allow custom` --evolve` project names (ultralytics#6567)

* Update train.py

As see in ultralytics#6463, modification on train in evolve process to allow custom save directory.

* fix val

* PEP8

whitespace around operator

* Cleanup

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Add `DATASETS_DIR` global in general.py (ultralytics#6578)

* return `opt` from `train.run()` (ultralytics#6581)

* Fix YouTube dislike button bug in `pafy` package (ultralytics#6603)

Per ultralytics#6583 (comment) by @alicera

* Update train.py

* Fix `hyp_evolve.yaml` indexing bug (ultralytics#6604)

* Fix `hyp_evolve.yaml` indexing bug

Bug caused hyp_evolve.yaml to display latest generation result rather than best generation result.

* Update plots.py

* Update general.py

* Update general.py

* Update general.py

* Fix `ROOT / data` when running W&B `log_dataset()` (ultralytics#6606)

* Fix missing data folder when running log_dataset

* Use ROOT/'data'

* PEP8 whitespace

* YouTube dependency fix `youtube_dl==2020.12.2` (ultralytics#6612)

Per ultralytics#5860 (comment) by @hdnh2006

* Add YOLOv5n to Reproduce section (ultralytics#6619)

* W&B: Improve resume stability (ultralytics#6611)

* log best.pt metrics at train end

* update

* Update __init__.py

* flush callbacks when using evolve

* remember batch size on resuming

* Update train.py

* improve stability of resume

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* W&B: don't log media in evolve (ultralytics#6617)

* YOLOv5 Export Benchmarks (ultralytics#6613)

* Add benchmarks.py

* Update

* Add requirements

* Updates

* Updates

* Updates

* Updates

* Updates

* Updates

* dataset autodownload from root

* Update

* Redirect to /dev/null

* sudo --help

* Cleanup

* Add exports pd df

* Updates

* Updates

* Updates

* Cleanup

* dir handling fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Cleanup

* Cleanup2

* Cleanup3

* Cleanup model_type

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Fix ConfusionMatrix scale `vmin=0.0` (ultralytics#6638)

Fix attempt for ultralytics#6626

* Fixed wandb logger KeyError (ultralytics#6637)

* Fix yolov3.yaml remove list (ultralytics#6655)

Per ultralytics/yolov3#1887 (comment)

* Validate with 2x `--workers` (ultralytics#6658)

* Validate with 2x `--workers` single-GPU/CPU fix (ultralytics#6659)

Fix for ultralytics#6658 for single-GPU and CPU training use cases

* Add `--cache val` (ultralytics#6663)

New `--cache val` argument will cache validation set only into RAM. Should help multi-GPU training speeds without consuming as much RAM as full `--cache ram`.

* Robust `scipy.cluster.vq.kmeans` too few points (ultralytics#6668)

* Handle `scipy.cluster.vq.kmeans` too few points

Resolves ultralytics#6664

* Update autoanchor.py

* Cleanup

* Update Dockerfile `torch==1.10.2+cu113` (ultralytics#6669)

* FROM nvcr.io/nvidia/pytorch:22.01-py3 (ultralytics#6670)

* FROM nvcr.io/nvidia/pytorch:21.10-py3 (ultralytics#6671)

22.10 returns 'no space left on device' error message.

Seems like a bug at docker. Raised issue in docker/hub-feedback#2209

* Update Dockerfile reorder installs (ultralytics#6672)

Also `nvidia-tensorboard-plugin-dlprof`, `nvidia-tensorboard` are no longer installed in NVCR base.

* FROM nvcr.io/nvidia/pytorch:21.10-py3 (ultralytics#6673)

Reordered installation may help reduce resource usage in autobuild

* FROM nvcr.io/nvidia/pytorch:21.10-py3 (ultralytics#6677)

Revert to 21.10 on autobuild fail

* Fix TF exports >= 2GB (ultralytics#6292)

* Fix exporting saved_model: pb exceeds 2GB

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Replace TF v1.x API with TF v2.x API for saved_model export

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Clean up

* Remove lambda in tf.function()

* Revert "Remove lambda in tf.function()" to be compatible with TF v2.4

This reverts commit 46c7931f11dfdea6ae340c77287c35c30b9e0779.

* Fix for pre-commit.ci

* Cleanup1

* Cleanup2

* Backwards compatibility update

* Update common.py

* Update common.py

* Cleanup3

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Fix `--evolve --bucket gs://...` (ultralytics#6698)

* Fix CoreML P6 inference (ultralytics#6700)

* Fix CoreML P6 inference

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Fix floating point in number of workers `nw` (ultralytics#6701)

Integer division by a float yields a (rounded) float. This causes
the dataloader to crash when creating a range.

* Edge TPU inference fix (ultralytics#6686)

* refactor: use edgetpu flag

* fix: remove bitwise and assignation to tflite

* Cleanup and fix tflite

* Cleanup

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Use `export_formats()` in export.py (ultralytics#6705)

* Use `export_formats()` in export.py

* list fix

* Suppress `torch` AMP-CPU warnings (ultralytics#6706)

This is a torch bug, but they seem unable or unwilling to fix it so I'm creating a suppression in YOLOv5. 

Resolves ultralytics#6692

* Update `nw` to `max(nd, 1)` (ultralytics#6714)

* GH: add PR template (ultralytics#6482)

* GH: add PR template

* Update CONTRIBUTING.md

* Update PULL_REQUEST_TEMPLATE.md

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update PULL_REQUEST_TEMPLATE.md

* Update PULL_REQUEST_TEMPLATE.md

* Update PULL_REQUEST_TEMPLATE.md

* Update PULL_REQUEST_TEMPLATE.md

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Switch default LR scheduler from cos to linear (ultralytics#6729)

* Switch default LR scheduler from cos to linear

Based on empirical results of training both ways on all YOLOv5 models.

* linear bug fix

* Updated VOC hyperparameters (ultralytics#6732)

* Update hyps

* Update hyp.VOC.yaml

* Update pathlib

* Update hyps

* Update hyps

* Update hyps

* Update hyps

* YOLOv5 v6.1 release (ultralytics#6739)

* Pre-commit table fix (ultralytics#6744)

* Update tutorial.ipynb (2 CPUs, 12.7 GB RAM, 42.2/166.8 GB disk) (ultralytics#6767)

* Update min warmup iterations from 1k to 100 (ultralytics#6768)

* Default `OMP_NUM_THREADS=8` (ultralytics#6770)

* Update tutorial.ipynb (ultralytics#6771)

* Update hyp.VOC.yaml (ultralytics#6772)

* Fix export for 1-channel images (ultralytics#6780)

Export failed for 1-channel input shape, 1-liner fix

* Update EMA decay `tau` (ultralytics#6769)

* Update EMA

* Update EMA

* ratio invert

* fix ratio invert

* fix2 ratio invert

* warmup iterations to 100

* ema_k

* implement tau

* implement tau

* YOLOv5s6 params FLOPs fix (ultralytics#6782)

* Update PULL_REQUEST_TEMPLATE.md (ultralytics#6783)

* Update autoanchor.py (ultralytics#6794)

* Update autoanchor.py

* Update autoanchor.py

* Update sweep.yaml (ultralytics#6825)

* Update sweep.yaml

Changed focal loss gamma search range between 1 and 4

* Update sweep.yaml

lowered the min value to match default

* AutoAnchor improved initialization robustness (ultralytics#6854)

* Update AutoAnchor

* Update AutoAnchor

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Add `*.ts` to `VID_FORMATS` (ultralytics#6859)

* Update `--cache disk` deprecate `*_npy/` dirs (ultralytics#6876)

* Updates

* Updates

* Updates

* Updates

* Updates

* Updates

* Updates

* Updates

* Updates

* Updates

* Cleanup

* Cleanup

* Update yolov5s.yaml (ultralytics#6865)

* Update yolov5s.yaml

* Update yolov5s.yaml

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Default FP16 TensorRT export (ultralytics#6798)

* Assert engine precision ultralytics#6777

* Default to FP32 inputs for TensorRT engines

* Default to FP16 TensorRT exports ultralytics#6777

* Remove wrong line ultralytics#6777

* Automatically adjust detect.py input precision ultralytics#6777

* Automatically adjust val.py input precision ultralytics#6777

* Add missing colon

* Cleanup

* Cleanup

* Remove default trt_fp16_input definition

* Experiment

* Reorder detect.py if statement to after half checks

* Update common.py

* Update export.py

* Cleanup

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Bump actions/setup-python from 2 to 3 (ultralytics#6880)

Bumps [actions/setup-python](https://github.com/actions/setup-python) from 2 to 3.
- [Release notes](https://github.com/actions/setup-python/releases)
- [Commits](actions/setup-python@v2...v3)

---
updated-dependencies:
- dependency-name: actions/setup-python
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>

* Bump actions/checkout from 2 to 3 (ultralytics#6881)

Bumps [actions/checkout](https://github.com/actions/checkout) from 2 to 3.
- [Release notes](https://github.com/actions/checkout/releases)
- [Changelog](https://github.com/actions/checkout/blob/main/CHANGELOG.md)
- [Commits](actions/checkout@v2...v3)

---
updated-dependencies:
- dependency-name: actions/checkout
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>

* Fix TRT `max_workspace_size` deprecation notice (ultralytics#6856)

* Fix TRT `max_workspace_size` deprecation notice

* Update export.py

* Update export.py

* Update bytes to GB with bitshift (ultralytics#6886)

* Move `git_describe()` to general.py (ultralytics#6918)

* Move `git_describe()` to general.py

* Move `git_describe()` to general.py

* PyTorch 1.11.0 compatibility updates (ultralytics#6932)

Resolves `AttributeError: 'Upsample' object has no attribute 'recompute_scale_factor'` first raised in ultralytics#5499

* Optimize PyTorch 1.11.0 compatibility update (ultralytics#6933)

* Allow 3-point segments (ultralytics#6938)

May resolve ultralytics#6931

* Fix PyTorch Hub export inference shapes (ultralytics#6949)

May resolve ultralytics#6947

* DetectMultiBackend() `--half` handling (ultralytics#6945)

* DetectMultiBackend() `--half` handling

* CI fixes

* rename .half to .fp16 to avoid conflict

* warmup fix

* val update

* engine update

* engine update

* Update Dockerfile `torch==1.11.0+cu113` (ultralytics#6954)

* New val.py `cuda` variable (ultralytics#6957)

* New val.py `cuda` variable

Fix for ONNX GPU val.

* Update val.py

* DetectMultiBackend() return `device` update (ultralytics#6958)

Fixes ONNX validation that returns outputs on CPU.

* Tensor initialization on device improvements (ultralytics#6959)

* Update common.py speed improvements

Eliminate .to() ops where possible for reduced data transfer overhead. Primarily affects warmup and PyTorch Hub inference.

* Updates

* Updates

* Update detect.py

* Update val.py

* EdgeTPU optimizations (ultralytics#6808)

* removed transpose op for better edgetpu support

* fix for training case

* enabled experimental new quantizer flag

* precalculate add and mul ops at compile time

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Model `ema` key backward compatibility fix (ultralytics#6972)

Fix for older model loading issue in ultralytics@d3d9cbc#commitcomment-68622388

* pt model to cpu on TF export

* YOLOv5 Export Benchmarks for GPU (ultralytics#6963)

* Add benchmarks.py GPU support

* Updates

* Updates

* Updates

* Updates

* Add --half

* Add TRT requirements

* Cleanup

* Add TF to warmup types

* Update export.py

* Update export.py

* Update benchmarks.py

* Update TQDM bar format (ultralytics#6988)

* Conditional `Timeout()` by OS (disable on Windows) (ultralytics#7013)

* Conditional `Timeout()` by OS (disable on Windows)

* Update general.py

* fix: add default PIL font as fallback  (ultralytics#7010)

* fix: add default font as fallback

Add default font as fallback if the downloading of the Arial.ttf font
fails for some reason, e.g. no access to public internet.

* Update plots.py

Co-authored-by: Maximilian Strobel <Maximilian.Strobel@infineon.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Consistent saved_model output format (ultralytics#7032)

* `ComputeLoss()` indexing/speed improvements (ultralytics#7048)

* device as class attribute

* Update loss.py

* Update loss.py

* improve zeros

* tensor split

* Update Dockerfile to `git clone` instead of `COPY` (ultralytics#7053)

Resolves git command errors that currently happen in image, i.e.:

```bash
root@382ae64aeca2:/usr/src/app# git pull
Warning: Permanently added the ECDSA host key for IP address '140.82.113.3' to the list of known hosts.
git@github.com: Permission denied (publickey).
fatal: Could not read from remote repository.

Please make sure you have the correct access rights
and the repository exists.
```

* Create SECURITY.md (ultralytics#7054)

* Create SECURITY.md

Resolves ultralytics#7052

* Move into ./github

* Update SECURITY.md

* Fix incomplete URL substring sanitation (ultralytics#7056)

Resolves code scanning alert in ultralytics#7055

* Use PIL to eliminate chroma subsampling in crops (ultralytics#7008)

* use pillow to save higher-quality jpg (w/o color subsampling)

* Cleanup and doc issue

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Fix `check_anchor_order()` in pixel-space not grid-space (ultralytics#7060)

* Update `check_anchor_order()`

Use mean area per output layer for added stability.

* Check in pixel-space not grid-space fix

* Update detect.py non-inplace with `y.tensor_split()` (ultralytics#7062)

* Update common.py lists for tuples (ultralytics#7063)

Improved profiling.

* Update W&B message to `LOGGER.info()` (ultralytics#7064)

* Update __init__.py (ultralytics#7065)

* Add non-zero `da` `check_anchor_order()` condition (ultralytics#7066)

* Fix2 `check_anchor_order()` in pixel-space not grid-space (ultralytics#7067)

Follows ultralytics#7060 which provided only a partial solution to this issue. ultralytics#7060 resolved occurences in yolo.py, this applies the same fix in autoanchor.py.

* Revert "Update detect.py non-inplace with `y.tensor_split()` (ultralytics#7062)" (ultralytics#7074)

This reverts commit d5e363f.

* Update loss.py with `if self.gr < 1:` (ultralytics#7087)

* Update loss.py with `if self.gr < 1:`

* Update loss.py

* Update loss for FP16 `tobj` (ultralytics#7088)

* Update model summary to display model name (ultralytics#7101)

* `torch.split()` 1.7.0 compatibility fix (ultralytics#7102)

* Update loss.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update loss.py

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Update benchmarks significant digits (ultralytics#7103)

* Model summary `pathlib` fix (ultralytics#7104)

Stems not working correctly for YOLOv5l with current .rstrip() implementation. After fix:
```
YOLOv5l summary: 468 layers, 46563709 parameters, 46563709 gradients, 109.3 GFLOPs
```

* Remove named arguments where possible (ultralytics#7105)

* Remove named arguments where possible

Speed improvements.

* Update yolo.py

* Update yolo.py

* Update yolo.py

* Multi-threaded VisDrone and VOC downloads (ultralytics#7108)

* Multi-threaded VOC download

* Update VOC.yaml

* Update

* Update general.py

* Update general.py

* `np.fromfile()` Chinese image paths fix (ultralytics#6979)

* 🎉 🆕 now can read Chinese image path. 

use "cv2.imdecode(np.fromfile(f, np.uint8), cv2.IMREAD_COLOR)" instead of "cv2.imread(f)" for Chinese image path.

* Update datasets.py

* Update __init__.py

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Add PyTorch Hub `results.save(labels=False)` option (ultralytics#7129)

Resolves ultralytics#388 (comment)

* SparseML integration

* Add SparseML dependancy

* Update: add missing files

* Update requirements.txt

* Update: sparseml-nightly support

* Update: remove model versioning

* Partial update for multi-stage recipes

* Update: multi-stage recipe support

* Update: remove sparseml dep

* Fix: multi-stage recipe handeling

* Fix: multi stage support

* Fix: non-recipe runs

* Add: legacy hyperparam files

* Fix: add copy-paste to hyps

* Fix: nit

* apply structure fixes

* Squashed rebase to v6.1 upstream

* Update SparseML Integration to V6.1 (#26)

* SparseML integration

* Add SparseML dependancy

* Update: add missing files

* Update requirements.txt

* Update: sparseml-nightly support

* Update: remove model versioning

* Partial update for multi-stage recipes

* Update: multi-stage recipe support

* Update: remove sparseml dep

* Fix: multi-stage recipe handeling

* Fix: multi stage support

* Fix: non-recipe runs

* Add: legacy hyperparam files

* Fix: add copy-paste to hyps

* Fix: nit

* apply structure fixes

* manager fixes

* Update function name

Co-authored-by: Konstantin <konstantin@neuralmagic.com>
Co-authored-by: Konstantin Gulin <66528950+KSGulin@users.noreply.github.com>
KSGulin added a commit to neuralmagic/yolov5 that referenced this pull request Apr 14, 2022
* Fix TensorRT potential unordered binding addresses (ultralytics#5826)

* feat: change file suffix in pythonic way

* fix: enforce binding addresses order

* fix: enforce binding addresses order

* Handle non-TTY `wandb.errors.UsageError` (ultralytics#5839)

* `try: except (..., wandb.errors.UsageError)`

* bug fix

* Avoid inplace modifying`imgs` in `LoadStreams` (ultralytics#5850)

When OpenCV retrieving image fail, original code would modify source images **inplace**, which may result in plotting bounding boxes on a black image. That is, before inference, source image `im0s[i]` is OK, but after inference before `Process predictions`,  `im0s[i]` may have been changed.

* Update `LoadImages` `ret_val=False` handling (ultralytics#5852)

Video errors may occur.

* Update val.py (ultralytics#5838)

* Update val.py

Solving Non-ASCII character '\xf0' error during runtime

* Update val.py

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Update TorchScript suffix to `*.torchscript` (ultralytics#5856)

* Add `--workers 8` argument to val.py (ultralytics#5857)

* Update val.py

Add an option to choose number of workers if not called by train.py

* Update comment

* 120 char line width

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Update `plot_lr_scheduler()` (ultralytics#5864)

shallow copy modify originals

* Update `nl` after `cutout()` (ultralytics#5873)

* `AutoShape()` models as `DetectMultiBackend()` instances (ultralytics#5845)

* Update AutoShape()

* autodownload ONNX

* Cleanup

* Finish updates

* Add Usage

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* fix device

* Update hubconf.py

* Update common.py

* smart param selection

* autodownload all formats

* autopad only pytorch models

* new_shape edits

* stride tensor fix

* Cleanup

* Single-command multiple-model export (ultralytics#5882)

* Export multiple models in series

Export multiple models in series by adding additional `*.pt` files to the `--weights` argument, i.e.:

```bash
python export.py --include tflite --weights yolov5n.pt  # export 1 model
python export.py --include tflite --weights yolov5n.pt yolov5s.pt yolov5m.pt yolov5l.pt yolov5x.pt  # export 5 models
```

* Update export.py

* Update README.md

* `Detections().tolist()` explicit argument fix (ultralytics#5907)

debugged for missigned Detections attributes

* Update wandb_utils.py (ultralytics#5908)

* Add *.engine (TensorRT extensions) to .gitignore (ultralytics#5911)

* Add *.engine (TensorRT extensions) to .gitignore

* Update .dockerignore

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Add ONNX inference providers (ultralytics#5918)

* Add ONNX inference providers

Fix for ultralytics#5916

* Update common.py

* Add hardware checks to `notebook_init()` (ultralytics#5919)

* Update notebook

* Update notebook

* update string

* update string

* Updates

* Updates

* Updates

* check both ipython and psutil

* remove sample_data if is_colab

* cleanup

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Revert "Update `plot_lr_scheduler()` (ultralytics#5864)" (ultralytics#5920)

This reverts commit 360eec6.

* Absolute '/content/sample_data' (ultralytics#5922)

* Default PyTorch Hub to `autocast(False)` (ultralytics#5926)

* Fix ONNX opset inconsistency with parseargs and run args (ultralytics#5937)

* Make `select_device()` robust to `batch_size=-1` (ultralytics#5940)

* Find out a bug. When set batch_size = -1 to use the autobatch.

reproduce:

* Fix type conflict

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* fix .gitignore not tracking existing folders (ultralytics#5946)

* fix .gitignore not tracking existing folders

fix .gitignore so that the files that are in the repository are actually being tracked.

Everything in the data/ folder is ignored, which also means the subdirectories are ignored. Fix so that the subdirectories and their contents are still tracked.

* Remove data/trainings

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Update `strip_optimizer()` (ultralytics#5949)

Replace 'training_result' with 'best_fitness' in strip_optimizer() to match key with ckpt from train.py

* Add nms and agnostic nms to export.py (ultralytics#5938)

* add nms and agnostic nms to export.py

* fix agnostic implies nms

* reorder args to group TF args

* PEP8 120 char

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Refactor NUM_THREADS (ultralytics#5954)

* Fix Detections class `tolist()` method (ultralytics#5945)

* Fix tolist() to add the file for each Detection

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Fix PEP8 requirement for 2 spaces before an inline comment

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Cleanup

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Fix `imgsz` bug (ultralytics#5948)

* fix imgsz bug

* Update detect.py

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* `pretrained=False` fix (ultralytics#5966)

* `pretriained=False` fix

Fix for ultralytics#5964

* CI speed improvement

* make parameter ignore epochs (ultralytics#5972)

* make parameter ignore epochs

ignore epochs functionality add to prevent spikes at the beginning when fitness spikes and decreases after.
Discussed at ultralytics#5971

* Update train.py

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* YOLOv5s6 params and FLOPs fix (ultralytics#5977)

* Update callbacks.py with `__init__()` (ultralytics#5979)

Add __init__() function.

* Increase `ar_thr` from 20 to 100 for better detection on slender (high aspect ratio) objects (ultralytics#5556)

* Making `ar_thr` available as a hyperparameter

* Disabling ar_thr as hyperparameter and computing from the dataset instead

* Fixing bug in ar_thr computation

* Fix `ar_thr` to 100

* Allow `--weights URL` (ultralytics#5991)

* Recommend `jar xf file.zip` for zips (ultralytics#5993)

* *.torchscript inference `self.jit` fix (ultralytics#6007)

* Check TensorRT>=8.0.0 version (ultralytics#6021)

* Check TensorRT>=8.0.0 version

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Multi-layer capable `--freeze` argument (ultralytics#6019)

* support specfiy multiple frozen layers

* fix bug

* Cleanup Freeze section

* Cleanup argument

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* train -> val comment fix (ultralytics#6024)

* Add dataset source citations (ultralytics#6032)

* Kaggle `LOGGER` fix (ultralytics#6041)

* Simplify `set_logging()` indexing (ultralytics#6042)

* `--freeze` fix (ultralytics#6044)

Fix for ultralytics#6038

* OpenVINO Export (ultralytics#6057)

* OpenVINO export

* Remove timeout

* Add 3 files

* str

* Constrain opset to 12

* Default ONNX opset to 12

* Make dir

* Make dir

* Cleanup

* Cleanup

* check_requirements(('openvino-dev',))

* Reduce G/D/CIoU logic operations (ultralytics#6074)

Consider that the default value is CIOU,adjust the order of judgment could reduce the number of judgments.
And “elif CIoU:” didn't need 'if'.

Co-authored-by: 李杰 <360751194@qq.comqq.com>

* Init tensor directly on device (ultralytics#6068)

Slightly more efficient than .to(device)

* W&B: track batch size after autobatch (ultralytics#6039)

* track batch size after autobatch

* remove redundant import

* Update __init__.py

* Update __init__.py

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* W&B: Log best results after training ends (ultralytics#6120)

* log best.pt metrics at train end

* update

* Update __init__.py

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Log best results (ultralytics#6085)

* log best result in summary

* comment added

* add space for `flake8`

* log `best/epoch`

* fix `dimension` for epoch

ValueError: all the input arrays must have same number of dimensions

* log `best/` in `utils.logger.__init__`

* fix pre-commit

1. missing whitespace around operator
2.  over-indented

* Refactor/reduce G/C/D/IoU `if: else` statements (ultralytics#6087)

* Refactor the code to reduece else

* Update metrics.py

* Cleanup

Co-authored-by: Cmos <gen.chen@ubisoft.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Add EdgeTPU support (ultralytics#3630)

* Add models/tf.py for TensorFlow and TFLite export

* Set auto=False for int8 calibration

* Update requirements.txt for TensorFlow and TFLite export

* Read anchors directly from PyTorch weights

* Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export

* Remove check_anchor_order, check_file, set_logging from import

* Reformat code and optimize imports

* Autodownload model and check cfg

* update --source path, img-size to 320, single output

* Adjust representative_dataset

* Put representative dataset in tfl_int8 block

* detect.py TF inference

* weights to string

* weights to string

* cleanup tf.py

* Add --dynamic-batch-size

* Add xywh normalization to reduce calibration error

* Update requirements.txt

TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error

* Fix imports

Move C3 from models.experimental to models.common

* Add models/tf.py for TensorFlow and TFLite export

* Set auto=False for int8 calibration

* Update requirements.txt for TensorFlow and TFLite export

* Read anchors directly from PyTorch weights

* Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export

* Remove check_anchor_order, check_file, set_logging from import

* Reformat code and optimize imports

* Autodownload model and check cfg

* update --source path, img-size to 320, single output

* Adjust representative_dataset

* detect.py TF inference

* Put representative dataset in tfl_int8 block

* weights to string

* weights to string

* cleanup tf.py

* Add --dynamic-batch-size

* Add xywh normalization to reduce calibration error

* Update requirements.txt

TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error

* Fix imports

Move C3 from models.experimental to models.common

* implement C3() and SiLU()

* Add TensorFlow and TFLite Detection

* Add --tfl-detect for TFLite Detection

* Add int8 quantized TFLite inference in detect.py

* Add --edgetpu for Edge TPU detection

* Fix --img-size to add rectangle TensorFlow and TFLite input

* Add --no-tf-nms to detect objects using models combined with TensorFlow NMS

* Fix --img-size list type input

* Update README.md

* Add Android project for TFLite inference

* Upgrade TensorFlow v2.3.1 -> v2.4.0

* Disable normalization of xywh

* Rewrite names init in detect.py

* Change input resolution 640 -> 320 on Android

* Disable NNAPI

* Update README.me --img 640 -> 320

* Update README.me for Edge TPU

* Update README.md

* Fix reshape dim to support dynamic batching

* Fix reshape dim to support dynamic batching

* Add epsilon argument in tf_BN, which is different between TF and PT

* Set stride to None if not using PyTorch, and do not warmup without PyTorch

* Add list support in check_img_size()

* Add list input support in detect.py

* sys.path.append('./') to run from yolov5/

* Add int8 quantization support for TensorFlow 2.5

* Add get_coco128.sh

* Remove --no-tfl-detect in models/tf.py (Use tf-android-tfl-detect branch for EdgeTPU)

* Update requirements.txt

* Replace torch.load() with attempt_load()

* Update requirements.txt

* Add --tf-raw-resize to set half_pixel_centers=False

* Remove android directory

* Update README.md

* Update README.md

* Add multiple OS support for EdgeTPU detection

* Fix export and detect

* Export 3 YOLO heads with Edge TPU models

* Remove xywh denormalization with Edge TPU models in detect.py

* Fix saved_model and pb detect error

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Fix pre-commit.ci failure

* Add edgetpu in export.py docstring

* Fix Edge TPU model detection exported by TF 2.7

* Add class names for TF/TFLite in DetectMultibackend

* Fix assignment with nl in TFLite Detection

* Add check when getting Edge TPU compiler version

* Add UTF-8 encoding in opening --data file for Windows

* Remove redundant TensorFlow import

* Add Edge TPU in export.py's docstring

* Add the detect layer in Edge TPU model conversion

* Default `dnn=False`

* Cleanup data.yaml loading

* Update detect.py

* Update val.py

* Comments and generalize data.yaml names

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: unknown <fangjiacong@ut.cn>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Enable AdamW optimizer (ultralytics#6152)

* Update export format docstrings (ultralytics#6151)

* Update export documentation

* Cleanup

* Update export.py

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update README.md

* Update README.md

* Update README.md

* Update train.py

* Update train.py

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Update greetings.yml (ultralytics#6165)

* [pre-commit.ci] pre-commit suggestions (ultralytics#6177)

updates:
- [github.com/pre-commit/pre-commit-hooks: v4.0.1 → v4.1.0](pre-commit/pre-commit-hooks@v4.0.1...v4.1.0)
- [github.com/asottile/pyupgrade: v2.23.1 → v2.31.0](asottile/pyupgrade@v2.23.1...v2.31.0)
- [github.com/PyCQA/isort: 5.9.3 → 5.10.1](PyCQA/isort@5.9.3...5.10.1)
- [github.com/PyCQA/flake8: 3.9.2 → 4.0.1](PyCQA/flake8@3.9.2...4.0.1)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Update NMS `max_wh=7680` for 8k images (ultralytics#6178)

* Add OpenVINO inference (ultralytics#6179)

* Ignore `*_openvino_model/` dir (ultralytics#6180)

* Global export format sort (ultralytics#6182)

* Global export sort

* Cleanup

* Fix TorchScript on mobile export (ultralytics#6183)

* fix export of TorchScript on mobile

* Cleanup

Co-authored-by: yinrong <yinrong@xiaomi.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* TensorRT 7 `anchor_grid` compatibility fix (ultralytics#6185)

* fix: TensorRT 7 incompatiable

* Add comment

* Add if: else and comment

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Add `tensorrt>=7.0.0` checks (ultralytics#6193)

* Add `tensorrt>=7.0.0` checks

* Update export.py

* Update common.py

* Update export.py

* Add CoreML inference (ultralytics#6195)

* Add Apple CoreML inference

* Cleanup

* Fix `nan`-robust stream FPS (ultralytics#6198)

Fix for Webcam stop working suddenly (Issue ultralytics#6197)

* Edge TPU compiler comment (ultralytics#6196)

* Edge TPU compiler comment

* 7 to 8 fix

* TFLite `--int8` 'flatbuffers==1.12' fix (ultralytics#6216)

* TFLite `--int8` 'flatbuffers==1.12' fix

Temporary workaround for TFLite INT8 export.

* Update export.py

* Update export.py

* TFLite `--int8` 'flatbuffers==1.12' fix 2 (ultralytics#6217)

* TFLite `--int8` 'flatbuffers==1.12' fix 2

Reorganizes ultralytics#6216 fix to update before `tensorflow` import so no restart required.

* Update export.py

* Add `edgetpu_compiler` checks (ultralytics#6218)

* Add `edgetpu_compiler` checks

* Update export.py

* Update export.py

* Update export.py

* Update export.py

* Update export.py

* Update export.py

* Attempt `edgetpu-compiler` autoinstall (ultralytics#6223)

* Attempt `edgetpu-compiler` autoinstall

Attempt to install edgetpu-compiler dependency if missing on Linux.

* Update export.py

* Update export.py

* Update README speed reproduction command (ultralytics#6228)

* Update P2-P7 `models/hub` variants (ultralytics#6230)

* Update p2-p7 `models/hub` variants

* Update common.py

* AutoAnchor camelcase corrections

* TensorRT 7 export fix (ultralytics#6235)

* Fix `cmd` string on `tfjs` export (ultralytics#6243)

* Fix cmd string on tfjs export

* Cleanup

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* TensorRT pip install

* Enable ONNX `--half` FP16 inference (ultralytics#6268)

* Enable ONNX ``--half` FP16 inference

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Update `export.py` with Detect, Validate usages (ultralytics#6280)

* Add `is_kaggle()` function (ultralytics#6285)

* Add `is_kaggle()` function

Return True if environment is Kaggle Notebook.

* Remove root loggers only if is_kaggle() == True

* Update general.py

* Fix `device` count check (ultralytics#6290)

* Fix device count check()

* Update torch_utils.py

* Update torch_utils.py

* Update hubconf.py

* Fixing bug multi-gpu training (ultralytics#6299)

* Fixing bug multi-gpu training

This solves this issue: ultralytics#6297 (comment)

* Update torch_utils.py for pep8

* `select_device()` cleanup (ultralytics#6302)

* `select_device()` cleanup

* Update torch_utils.py

* Update torch_utils.py

* Update torch_utils.py

* Update torch_utils.py

* Update torch_utils.py

* Fix `train.py` parameter groups desc error (ultralytics#6318)

* Fix `train.py` parameter groups desc error

* Cleanup

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Remove `dataset_stats()` autodownload capability (ultralytics#6303)

* Remove `dataset_stats()` autodownload capability

@kalenmike security update per Slack convo

* Update datasets.py

* Console corrupted -> corrupt (ultralytics#6338)

* Console corrupted -> corrupt 

Minor style changes.

* Update export.py

* TensorRT `assert im.device.type != 'cpu'` on export (ultralytics#6340)

* TensorRT `assert im.device.type != 'cpu'` on export

* Update export.py

* `export.py` return exported files/dirs (ultralytics#6343)

* `export.py` return exported files/dirs

* Path to str

* Created using Colaboratory

* `export.py` automatic `forward_export` (ultralytics#6352)

* `export.py` automatic `forward_export`

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* New environment variable `VERBOSE` (ultralytics#6353)

New environment variable `VERBOSE`

* Reuse `de_parallel()` rather than `is_parallel()` (ultralytics#6354)

* `DEVICE_COUNT` instead of `WORLD_SIZE` to calculate `nw` (ultralytics#6324)

* Flush callbacks when on `--evolve` (ultralytics#6374)

* log best.pt metrics at train end

* update

* Update __init__.py

* flush callbacks when using evolve

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* FROM nvcr.io/nvidia/pytorch:21.12-py3 (ultralytics#6377)

* FROM nvcr.io/nvidia/pytorch:21.10-py3 (ultralytics#6379)

21.12 generates dockerhub errors so rolling back to 21.10 with latest pytorch install. Not sure if this torch install will work on non-GPU dockerhub autobuild so this is an experiment.

* Add `albumentations` to Dockerfile (ultralytics#6392)

* Add `stop_training=False` flag to callbacks (ultralytics#6365)

* New flag 'stop_training' in util.callbacks.Callbacks class to prematurely stop training from callback handler

* Removed most of the new  checks, leaving only the one after calling 'on_train_batch_end'

* Cleanup

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Add `detect.py` GIF video inference (ultralytics#6410)

* Add detect.py GIF video inference

* Cleanup

* Update `greetings.yaml` email address (ultralytics#6412)

* Update `greetings.yaml` email address

* Update greetings.yml

* Rename logger from 'utils.logger' to 'yolov5' (ultralytics#6421)

* Gave a more explicit name to the logger

* Cleanup

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Prefer `tflite_runtime` for TFLite inference if installed (ultralytics#6406)

* import tflite_runtime if tensorflow not installed

* rename tflite to tfli

* Attempt tflite_runtime for all TFLite workflows

Also rename tfli to tfl

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Update workflows (ultralytics#6427)

* Workflow updates

* quotes fix

* best to weights fix

* Namespace `VERBOSE` env variable to `YOLOv5_VERBOSE` (ultralytics#6428)

* Verbose updates

* Verbose updates

* Add `*.asf` video support (ultralytics#6436)

* Revert "Remove `dataset_stats()` autodownload capability (ultralytics#6303)" (ultralytics#6442)

This reverts commit 3119b2f.

* Fix `select_device()` for Multi-GPU (ultralytics#6434)

* Fix `select_device()` for Multi-GPU

Possible fix for ultralytics#6431

* Update torch_utils.py

* Update torch_utils.py

* Update torch_utils.py

* Update torch_utils.py

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Fix2 `select_device()` for Multi-GPU (ultralytics#6461)

* Fix2 select_device() for Multi-GPU

* Cleanup

* Cleanup

* Simplify error message

* Improve assert

* Update torch_utils.py

* Add Product Hunt social media icon (ultralytics#6464)

* Social media icons update

* fix URL

* Update README.md

* Resolve dataset paths (ultralytics#6489)

* Simplify TF normalized to pixels (ultralytics#6494)

* Improved `export.py` usage examples (ultralytics#6495)

* Improved `export.py` usage examples

* Cleanup

* CoreML inference fix `list()` -> `sorted()` (ultralytics#6496)

* Suppress `torch.jit.TracerWarning` on export (ultralytics#6498)

* Suppress torch.jit.TracerWarning

TracerWarnings can be safely ignored.

* Cleanup

* Suppress export.run() TracerWarnings (ultralytics#6499)

Suppresses warnings when calling export.run() directly, not just CLI python export.py.

Also adds Requirements examples for CPU and GPU backends

* W&B: Remember batchsize on resuming (ultralytics#6512)

* log best.pt metrics at train end

* update

* Update __init__.py

* flush callbacks when using evolve

* remember batch size on resuming

* Update train.py

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Update hyp.scratch-high.yaml (ultralytics#6525)

Update `lrf: 0.1`, tested on YOLOv5x6 to 55.0 mAP@0.5:0.95, slightly higher than current.

* TODO issues exempt from stale action (ultralytics#6530)

* Update val_batch*.jpg for Chinese fonts (ultralytics#6526)

* Update plots for Chinese fonts

* make is_chinese() non-str safe

* Add global FONT

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update general.py

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Social icons after text (ultralytics#6473)

* Social icons after text

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update README.md

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Edge TPU compiler `sudo` fix (ultralytics#6531)

* Edge TPU compiler sudo fix

Allows for auto-install of Edge TPU compiler on non-sudo systems like the YOLOv5 Docker image.

@kalenmike

* Update export.py

* Update export.py

* Update export.py

* Edge TPU export 'list index out of range' fix (ultralytics#6533)

* Edge TPU `tf.lite.experimental.load_delegate` fix (ultralytics#6536)

* Edge TPU `tf.lite.experimental.load_delegate` fix

Fix attempt for ultralytics#6535

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Fixing minor multi-streaming issues with TensoRT engine (ultralytics#6504)

* Update batch-size in model.warmup() + indentation for logging inference results

* These changes are in response to PR comments

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Load checkpoint on CPU instead of on GPU (ultralytics#6516)

* Load checkpoint on CPU instead of on GPU

* refactor: simplify code

* Cleanup

* Update train.py

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* flake8: code meanings (ultralytics#6481)

* Fix 6 Flake8 issues (ultralytics#6541)

* F541

* F821

* F841

* E741

* E302

* E722

* Apply suggestions from code review

* Update general.py

* Update datasets.py

* Update export.py

* Update plots.py

* Update plots.py

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Edge TPU TF imports fix (ultralytics#6542)

* Edge TPU TF imports fix

Fix for ultralytics#6535 (comment)

* Update common.py

* Move trainloader functions to class methods (ultralytics#6559)

* Move trainloader functions to class methods

* results = ThreadPool(NUM_THREADS).imap(self.load_image, range(n))

* Cleanup

* Improved AutoBatch DDP error message (ultralytics#6568)

* Improved AutoBatch DDP error message

* Cleanup

* Fix zero-export handling with `if any(f):` (ultralytics#6569)

* Fix zero-export handling with `if any(f):`

Partial fix for ultralytics#6563

* Cleanup

* Fix `plot_labels()` colored histogram bug (ultralytics#6574)

* Fix `plot_labels()` colored histogram bug

* Cleanup

* Allow custom` --evolve` project names (ultralytics#6567)

* Update train.py

As see in ultralytics#6463, modification on train in evolve process to allow custom save directory.

* fix val

* PEP8

whitespace around operator

* Cleanup

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Add `DATASETS_DIR` global in general.py (ultralytics#6578)

* return `opt` from `train.run()` (ultralytics#6581)

* Fix YouTube dislike button bug in `pafy` package (ultralytics#6603)

Per ultralytics#6583 (comment) by @alicera

* Update train.py

* Fix `hyp_evolve.yaml` indexing bug (ultralytics#6604)

* Fix `hyp_evolve.yaml` indexing bug

Bug caused hyp_evolve.yaml to display latest generation result rather than best generation result.

* Update plots.py

* Update general.py

* Update general.py

* Update general.py

* Fix `ROOT / data` when running W&B `log_dataset()` (ultralytics#6606)

* Fix missing data folder when running log_dataset

* Use ROOT/'data'

* PEP8 whitespace

* YouTube dependency fix `youtube_dl==2020.12.2` (ultralytics#6612)

Per ultralytics#5860 (comment) by @hdnh2006

* Add YOLOv5n to Reproduce section (ultralytics#6619)

* W&B: Improve resume stability (ultralytics#6611)

* log best.pt metrics at train end

* update

* Update __init__.py

* flush callbacks when using evolve

* remember batch size on resuming

* Update train.py

* improve stability of resume

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* W&B: don't log media in evolve (ultralytics#6617)

* YOLOv5 Export Benchmarks (ultralytics#6613)

* Add benchmarks.py

* Update

* Add requirements

* Updates

* Updates

* Updates

* Updates

* Updates

* Updates

* dataset autodownload from root

* Update

* Redirect to /dev/null

* sudo --help

* Cleanup

* Add exports pd df

* Updates

* Updates

* Updates

* Cleanup

* dir handling fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Cleanup

* Cleanup2

* Cleanup3

* Cleanup model_type

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Fix ConfusionMatrix scale `vmin=0.0` (ultralytics#6638)

Fix attempt for ultralytics#6626

* Fixed wandb logger KeyError (ultralytics#6637)

* Fix yolov3.yaml remove list (ultralytics#6655)

Per ultralytics/yolov3#1887 (comment)

* Validate with 2x `--workers` (ultralytics#6658)

* Validate with 2x `--workers` single-GPU/CPU fix (ultralytics#6659)

Fix for ultralytics#6658 for single-GPU and CPU training use cases

* Add `--cache val` (ultralytics#6663)

New `--cache val` argument will cache validation set only into RAM. Should help multi-GPU training speeds without consuming as much RAM as full `--cache ram`.

* Robust `scipy.cluster.vq.kmeans` too few points (ultralytics#6668)

* Handle `scipy.cluster.vq.kmeans` too few points

Resolves ultralytics#6664

* Update autoanchor.py

* Cleanup

* Update Dockerfile `torch==1.10.2+cu113` (ultralytics#6669)

* FROM nvcr.io/nvidia/pytorch:22.01-py3 (ultralytics#6670)

* FROM nvcr.io/nvidia/pytorch:21.10-py3 (ultralytics#6671)

22.10 returns 'no space left on device' error message.

Seems like a bug at docker. Raised issue in docker/hub-feedback#2209

* Update Dockerfile reorder installs (ultralytics#6672)

Also `nvidia-tensorboard-plugin-dlprof`, `nvidia-tensorboard` are no longer installed in NVCR base.

* FROM nvcr.io/nvidia/pytorch:21.10-py3 (ultralytics#6673)

Reordered installation may help reduce resource usage in autobuild

* FROM nvcr.io/nvidia/pytorch:21.10-py3 (ultralytics#6677)

Revert to 21.10 on autobuild fail

* Fix TF exports >= 2GB (ultralytics#6292)

* Fix exporting saved_model: pb exceeds 2GB

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Replace TF v1.x API with TF v2.x API for saved_model export

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Clean up

* Remove lambda in tf.function()

* Revert "Remove lambda in tf.function()" to be compatible with TF v2.4

This reverts commit 46c7931f11dfdea6ae340c77287c35c30b9e0779.

* Fix for pre-commit.ci

* Cleanup1

* Cleanup2

* Backwards compatibility update

* Update common.py

* Update common.py

* Cleanup3

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Fix `--evolve --bucket gs://...` (ultralytics#6698)

* Fix CoreML P6 inference (ultralytics#6700)

* Fix CoreML P6 inference

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Fix floating point in number of workers `nw` (ultralytics#6701)

Integer division by a float yields a (rounded) float. This causes
the dataloader to crash when creating a range.

* Edge TPU inference fix (ultralytics#6686)

* refactor: use edgetpu flag

* fix: remove bitwise and assignation to tflite

* Cleanup and fix tflite

* Cleanup

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Use `export_formats()` in export.py (ultralytics#6705)

* Use `export_formats()` in export.py

* list fix

* Suppress `torch` AMP-CPU warnings (ultralytics#6706)

This is a torch bug, but they seem unable or unwilling to fix it so I'm creating a suppression in YOLOv5. 

Resolves ultralytics#6692

* Update `nw` to `max(nd, 1)` (ultralytics#6714)

* GH: add PR template (ultralytics#6482)

* GH: add PR template

* Update CONTRIBUTING.md

* Update PULL_REQUEST_TEMPLATE.md

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update PULL_REQUEST_TEMPLATE.md

* Update PULL_REQUEST_TEMPLATE.md

* Update PULL_REQUEST_TEMPLATE.md

* Update PULL_REQUEST_TEMPLATE.md

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Switch default LR scheduler from cos to linear (ultralytics#6729)

* Switch default LR scheduler from cos to linear

Based on empirical results of training both ways on all YOLOv5 models.

* linear bug fix

* Updated VOC hyperparameters (ultralytics#6732)

* Update hyps

* Update hyp.VOC.yaml

* Update pathlib

* Update hyps

* Update hyps

* Update hyps

* Update hyps

* YOLOv5 v6.1 release (ultralytics#6739)

* Pre-commit table fix (ultralytics#6744)

* Update tutorial.ipynb (2 CPUs, 12.7 GB RAM, 42.2/166.8 GB disk) (ultralytics#6767)

* Update min warmup iterations from 1k to 100 (ultralytics#6768)

* Default `OMP_NUM_THREADS=8` (ultralytics#6770)

* Update tutorial.ipynb (ultralytics#6771)

* Update hyp.VOC.yaml (ultralytics#6772)

* Fix export for 1-channel images (ultralytics#6780)

Export failed for 1-channel input shape, 1-liner fix

* Update EMA decay `tau` (ultralytics#6769)

* Update EMA

* Update EMA

* ratio invert

* fix ratio invert

* fix2 ratio invert

* warmup iterations to 100

* ema_k

* implement tau

* implement tau

* YOLOv5s6 params FLOPs fix (ultralytics#6782)

* Update PULL_REQUEST_TEMPLATE.md (ultralytics#6783)

* Update autoanchor.py (ultralytics#6794)

* Update autoanchor.py

* Update autoanchor.py

* Update sweep.yaml (ultralytics#6825)

* Update sweep.yaml

Changed focal loss gamma search range between 1 and 4

* Update sweep.yaml

lowered the min value to match default

* AutoAnchor improved initialization robustness (ultralytics#6854)

* Update AutoAnchor

* Update AutoAnchor

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Add `*.ts` to `VID_FORMATS` (ultralytics#6859)

* Update `--cache disk` deprecate `*_npy/` dirs (ultralytics#6876)

* Updates

* Updates

* Updates

* Updates

* Updates

* Updates

* Updates

* Updates

* Updates

* Updates

* Cleanup

* Cleanup

* Update yolov5s.yaml (ultralytics#6865)

* Update yolov5s.yaml

* Update yolov5s.yaml

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Default FP16 TensorRT export (ultralytics#6798)

* Assert engine precision ultralytics#6777

* Default to FP32 inputs for TensorRT engines

* Default to FP16 TensorRT exports ultralytics#6777

* Remove wrong line ultralytics#6777

* Automatically adjust detect.py input precision ultralytics#6777

* Automatically adjust val.py input precision ultralytics#6777

* Add missing colon

* Cleanup

* Cleanup

* Remove default trt_fp16_input definition

* Experiment

* Reorder detect.py if statement to after half checks

* Update common.py

* Update export.py

* Cleanup

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Bump actions/setup-python from 2 to 3 (ultralytics#6880)

Bumps [actions/setup-python](https://github.com/actions/setup-python) from 2 to 3.
- [Release notes](https://github.com/actions/setup-python/releases)
- [Commits](actions/setup-python@v2...v3)

---
updated-dependencies:
- dependency-name: actions/setup-python
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>

* Bump actions/checkout from 2 to 3 (ultralytics#6881)

Bumps [actions/checkout](https://github.com/actions/checkout) from 2 to 3.
- [Release notes](https://github.com/actions/checkout/releases)
- [Changelog](https://github.com/actions/checkout/blob/main/CHANGELOG.md)
- [Commits](actions/checkout@v2...v3)

---
updated-dependencies:
- dependency-name: actions/checkout
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>

* Fix TRT `max_workspace_size` deprecation notice (ultralytics#6856)

* Fix TRT `max_workspace_size` deprecation notice

* Update export.py

* Update export.py

* Update bytes to GB with bitshift (ultralytics#6886)

* Move `git_describe()` to general.py (ultralytics#6918)

* Move `git_describe()` to general.py

* Move `git_describe()` to general.py

* PyTorch 1.11.0 compatibility updates (ultralytics#6932)

Resolves `AttributeError: 'Upsample' object has no attribute 'recompute_scale_factor'` first raised in ultralytics#5499

* Optimize PyTorch 1.11.0 compatibility update (ultralytics#6933)

* Allow 3-point segments (ultralytics#6938)

May resolve ultralytics#6931

* Fix PyTorch Hub export inference shapes (ultralytics#6949)

May resolve ultralytics#6947

* DetectMultiBackend() `--half` handling (ultralytics#6945)

* DetectMultiBackend() `--half` handling

* CI fixes

* rename .half to .fp16 to avoid conflict

* warmup fix

* val update

* engine update

* engine update

* Update Dockerfile `torch==1.11.0+cu113` (ultralytics#6954)

* New val.py `cuda` variable (ultralytics#6957)

* New val.py `cuda` variable

Fix for ONNX GPU val.

* Update val.py

* DetectMultiBackend() return `device` update (ultralytics#6958)

Fixes ONNX validation that returns outputs on CPU.

* Tensor initialization on device improvements (ultralytics#6959)

* Update common.py speed improvements

Eliminate .to() ops where possible for reduced data transfer overhead. Primarily affects warmup and PyTorch Hub inference.

* Updates

* Updates

* Update detect.py

* Update val.py

* EdgeTPU optimizations (ultralytics#6808)

* removed transpose op for better edgetpu support

* fix for training case

* enabled experimental new quantizer flag

* precalculate add and mul ops at compile time

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Model `ema` key backward compatibility fix (ultralytics#6972)

Fix for older model loading issue in ultralytics@d3d9cbc#commitcomment-68622388

* pt model to cpu on TF export

* YOLOv5 Export Benchmarks for GPU (ultralytics#6963)

* Add benchmarks.py GPU support

* Updates

* Updates

* Updates

* Updates

* Add --half

* Add TRT requirements

* Cleanup

* Add TF to warmup types

* Update export.py

* Update export.py

* Update benchmarks.py

* Update TQDM bar format (ultralytics#6988)

* Conditional `Timeout()` by OS (disable on Windows) (ultralytics#7013)

* Conditional `Timeout()` by OS (disable on Windows)

* Update general.py

* fix: add default PIL font as fallback  (ultralytics#7010)

* fix: add default font as fallback

Add default font as fallback if the downloading of the Arial.ttf font
fails for some reason, e.g. no access to public internet.

* Update plots.py

Co-authored-by: Maximilian Strobel <Maximilian.Strobel@infineon.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Consistent saved_model output format (ultralytics#7032)

* `ComputeLoss()` indexing/speed improvements (ultralytics#7048)

* device as class attribute

* Update loss.py

* Update loss.py

* improve zeros

* tensor split

* Update Dockerfile to `git clone` instead of `COPY` (ultralytics#7053)

Resolves git command errors that currently happen in image, i.e.:

```bash
root@382ae64aeca2:/usr/src/app# git pull
Warning: Permanently added the ECDSA host key for IP address '140.82.113.3' to the list of known hosts.
git@github.com: Permission denied (publickey).
fatal: Could not read from remote repository.

Please make sure you have the correct access rights
and the repository exists.
```

* Create SECURITY.md (ultralytics#7054)

* Create SECURITY.md

Resolves ultralytics#7052

* Move into ./github

* Update SECURITY.md

* Fix incomplete URL substring sanitation (ultralytics#7056)

Resolves code scanning alert in ultralytics#7055

* Use PIL to eliminate chroma subsampling in crops (ultralytics#7008)

* use pillow to save higher-quality jpg (w/o color subsampling)

* Cleanup and doc issue

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Fix `check_anchor_order()` in pixel-space not grid-space (ultralytics#7060)

* Update `check_anchor_order()`

Use mean area per output layer for added stability.

* Check in pixel-space not grid-space fix

* Update detect.py non-inplace with `y.tensor_split()` (ultralytics#7062)

* Update common.py lists for tuples (ultralytics#7063)

Improved profiling.

* Update W&B message to `LOGGER.info()` (ultralytics#7064)

* Update __init__.py (ultralytics#7065)

* Add non-zero `da` `check_anchor_order()` condition (ultralytics#7066)

* Fix2 `check_anchor_order()` in pixel-space not grid-space (ultralytics#7067)

Follows ultralytics#7060 which provided only a partial solution to this issue. ultralytics#7060 resolved occurences in yolo.py, this applies the same fix in autoanchor.py.

* Revert "Update detect.py non-inplace with `y.tensor_split()` (ultralytics#7062)" (ultralytics#7074)

This reverts commit d5e363f.

* Update loss.py with `if self.gr < 1:` (ultralytics#7087)

* Update loss.py with `if self.gr < 1:`

* Update loss.py

* Update loss for FP16 `tobj` (ultralytics#7088)

* Update model summary to display model name (ultralytics#7101)

* `torch.split()` 1.7.0 compatibility fix (ultralytics#7102)

* Update loss.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update loss.py

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Update benchmarks significant digits (ultralytics#7103)

* Model summary `pathlib` fix (ultralytics#7104)

Stems not working correctly for YOLOv5l with current .rstrip() implementation. After fix:
```
YOLOv5l summary: 468 layers, 46563709 parameters, 46563709 gradients, 109.3 GFLOPs
```

* Remove named arguments where possible (ultralytics#7105)

* Remove named arguments where possible

Speed improvements.

* Update yolo.py

* Update yolo.py

* Update yolo.py

* Multi-threaded VisDrone and VOC downloads (ultralytics#7108)

* Multi-threaded VOC download

* Update VOC.yaml

* Update

* Update general.py

* Update general.py

* `np.fromfile()` Chinese image paths fix (ultralytics#6979)

* 🎉 🆕 now can read Chinese image path. 

use "cv2.imdecode(np.fromfile(f, np.uint8), cv2.IMREAD_COLOR)" instead of "cv2.imread(f)" for Chinese image path.

* Update datasets.py

* Update __init__.py

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Add PyTorch Hub `results.save(labels=False)` option (ultralytics#7129)

Resolves ultralytics#388 (comment)

* SparseML integration

* Add SparseML dependancy

* Update: add missing files

* Update requirements.txt

* Update: sparseml-nightly support

* Update: remove model versioning

* Partial update for multi-stage recipes

* Update: multi-stage recipe support

* Update: remove sparseml dep

* Fix: multi-stage recipe handeling

* Fix: multi stage support

* Fix: non-recipe runs

* Add: legacy hyperparam files

* Fix: add copy-paste to hyps

* Fix: nit

* apply structure fixes

* Squashed rebase to v6.1 upstream

* Update SparseML Integration to V6.1 (#26)

* SparseML integration

* Add SparseML dependancy

* Update: add missing files

* Update requirements.txt

* Update: sparseml-nightly support

* Update: remove model versioning

* Partial update for multi-stage recipes

* Update: multi-stage recipe support

* Update: remove sparseml dep

* Fix: multi-stage recipe handeling

* Fix: multi stage support

* Fix: non-recipe runs

* Add: legacy hyperparam files

* Fix: add copy-paste to hyps

* Fix: nit

* apply structure fixes

* manager fixes

* Update function name

Co-authored-by: Konstantin <konstantin@neuralmagic.com>
Co-authored-by: Konstantin Gulin <66528950+KSGulin@users.noreply.github.com>
BjarneKuehl pushed a commit to fhkiel-mlaip/yolov5 that referenced this pull request Aug 26, 2022
…h aspect ratio) objects (ultralytics#5556)

* Making `ar_thr` available as a hyperparameter

* Disabling ar_thr as hyperparameter and computing from the dataset instead

* Fixing bug in ar_thr computation

* Fix `ar_thr` to 100
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

Documentation on aspect ratio threshold
2 participants