-
Notifications
You must be signed in to change notification settings - Fork 3
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Remove target b #2291
Remove target b #2291
Conversation
🔍 Vulnerabilities of
|
digest | sha256:1d21eca7daa056afc687aaa9fd078241ce62de3380424109d9566b2987142ac9 |
vulnerabilities | |
platform | linux/amd64 |
size | 12 MB |
packages | 47 |
stdlib
|
Affected range | >=1.20.0-0 |
Fixed version | 1.20.4 |
Description
Not all valid JavaScript whitespace characters are considered to be whitespace. Templates containing whitespace characters outside of the character set "\t\n\f\r\u0020\u2028\u2029" in JavaScript contexts that also contain actions may not be properly sanitized during execution.
Affected range | >=1.20.0-0 |
Fixed version | 1.20.3 |
Description
Templates do not properly consider backticks (`) as Javascript string delimiters, and do not escape them as expected.
Backticks are used, since ES6, for JS template literals. If a template contains a Go template action within a Javascript template literal, the contents of the action can be used to terminate the literal, injecting arbitrary Javascript code into the Go template.
As ES6 template literals are rather complex, and themselves can do string interpolation, the decision was made to simply disallow Go template actions from being used inside of them (e.g. "var a = {{.}}"), since there is no obviously safe way to allow this behavior. This takes the same approach as github.com/google/safehtml.
With fix, Template.Parse returns an Error when it encounters templates like this, with an ErrorCode of value 12. This ErrorCode is currently unexported, but will be exported in the release of Go 1.21.
Users who rely on the previous behavior can re-enable it using the GODEBUG flag jstmpllitinterp=1, with the caveat that backticks will now be escaped. This should be used with caution.
Affected range | >=1.20.0-0 |
Fixed version | 1.20.5 |
Description
On Unix platforms, the Go runtime does not behave differently when a binary is run with the setuid/setgid bits. This can be dangerous in certain cases, such as when dumping memory state, or assuming the status of standard i/o file descriptors.
If a setuid/setgid binary is executed with standard I/O file descriptors closed, opening any files can result in unexpected content being read or written with elevated privileges. Similarly, if a setuid/setgid program is terminated, either via panic or signal, it may leak the contents of its registers.
Affected range | <1.20.10 |
Fixed version | 1.20.10 |
Description
A malicious HTTP/2 client which rapidly creates requests and immediately resets them can cause excessive server resource consumption. While the total number of requests is bounded by the http2.Server.MaxConcurrentStreams setting, resetting an in-progress request allows the attacker to create a new request while the existing one is still executing.
With the fix applied, HTTP/2 servers now bound the number of simultaneously executing handler goroutines to the stream concurrency limit (MaxConcurrentStreams). New requests arriving when at the limit (which can only happen after the client has reset an existing, in-flight request) will be queued until a handler exits. If the request queue grows too large, the server will terminate the connection.
This issue is also fixed in golang.org/x/net/http2 for users manually configuring HTTP/2.
The default stream concurrency limit is 250 streams (requests) per HTTP/2 connection. This value may be adjusted using the golang.org/x/net/http2 package; see the Server.MaxConcurrentStreams setting and the ConfigureServer function.
Affected range | >=1.20.0-0 |
Fixed version | 1.20.3 |
Description
Calling any of the Parse functions on Go source code which contains //line directives with very large line numbers can cause an infinite loop due to integer overflow.
Affected range | >=1.20.0-0 |
Fixed version | 1.20.3 |
Description
Multipart form parsing can consume large amounts of CPU and memory when processing form inputs containing very large numbers of parts.
This stems from several causes:
- mime/multipart.Reader.ReadForm limits the total memory a parsed multipart form can consume. ReadForm can undercount the amount of memory consumed, leading it to accept larger inputs than intended.
- Limiting total memory does not account for increased pressure on the garbage collector from large numbers of small allocations in forms with many parts.
- ReadForm can allocate a large number of short-lived buffers, further increasing pressure on the garbage collector.
The combination of these factors can permit an attacker to cause an program that parses multipart forms to consume large amounts of CPU and memory, potentially resulting in a denial of service. This affects programs that use mime/multipart.Reader.ReadForm, as well as form parsing in the net/http package with the Request methods FormFile, FormValue, ParseMultipartForm, and PostFormValue.
With fix, ReadForm now does a better job of estimating the memory consumption of parsed forms, and performs many fewer short-lived allocations.
In addition, the fixed mime/multipart.Reader imposes the following limits on the size of parsed forms:
- Forms parsed with ReadForm may contain no more than 1000 parts. This limit may be adjusted with the environment variable GODEBUG=multipartmaxparts=.
- Form parts parsed with NextPart and NextRawPart may contain no more than 10,000 header fields. In addition, forms parsed with ReadForm may contain no more than 10,000 header fields across all parts. This limit may be adjusted with the environment variable GODEBUG=multipartmaxheaders=.
Affected range | >=1.20.0-0 |
Fixed version | 1.20.3 |
Description
HTTP and MIME header parsing can allocate large amounts of memory, even when parsing small inputs, potentially leading to a denial of service.
Certain unusual patterns of input data can cause the common function used to parse HTTP and MIME headers to allocate substantially more memory than required to hold the parsed headers. An attacker can exploit this behavior to cause an HTTP server to allocate large amounts of memory from a small request, potentially leading to memory exhaustion and a denial of service.
With fix, header parsing now correctly allocates only the memory required to hold parsed headers.
Affected range | >=1.20.0-0 |
Fixed version | 1.20.4 |
Description
Templates containing actions in unquoted HTML attributes (e.g. "attr={{.}}") executed with empty input can result in output with unexpected results when parsed due to HTML normalization rules. This may allow injection of arbitrary attributes into tags.
Affected range | >=1.20.0-0 |
Fixed version | 1.20.4 |
Description
Angle brackets (<>) are not considered dangerous characters when inserted into CSS contexts. Templates containing multiple actions separated by a '/' character can result in unexpectedly closing the CSS context and allowing for injection of unexpected HTML, if executed with untrusted input.
Affected range | >=1.20.0-0 |
Fixed version | 1.20.6 |
Description
The HTTP/1 client does not fully validate the contents of the Host header. A maliciously crafted Host header can inject additional headers or entire requests.
With fix, the HTTP/1 client now refuses to send requests containing an invalid Request.Host or Request.URL.Host value.
Affected range | <1.20.8 |
Fixed version | 1.20.8 |
Description
The html/template package does not apply the proper rules for handling occurrences of "<script", "<!--", and "</script" within JS literals in <script> contexts. This may cause the template parser to improperly consider script contexts to be terminated early, causing actions to be improperly escaped. This could be leveraged to perform an XSS attack.
Affected range | <1.20.8 |
Fixed version | 1.20.8 |
Description
The html/template package does not properly handle HTML-like "" comment tokens, nor hashbang "#!" comment tokens, in <script> contexts. This may cause the template parser to improperly interpret the contents of <script> contexts, causing actions to be improperly escaped. This may be leveraged to perform an XSS attack.
Affected range | <1.20.11 |
Fixed version | 1.20.11 |
Description
On Windows, The IsLocal function does not correctly detect reserved device names in some cases.
Reserved names followed by spaces, such as "COM1 ", and reserved names "COM" and "LPT" followed by superscript 1, 2, or 3, are incorrectly reported as local.
With fix, IsLocal now correctly reports these names as non-local.
Affected range | <1.20.12 |
Fixed version | 1.20.12 |
Description
A malicious HTTP sender can use chunk extensions to cause a receiver reading from a request or response body to read many more bytes from the network than are in the body.
A malicious HTTP client can further exploit this to cause a server to automatically read a large amount of data (up to about 1GiB) when a handler fails to read the entire body of a request.
Chunk extensions are a little-used HTTP feature which permit including additional metadata in a request or response body sent using the chunked encoding. The net/http chunked encoding reader discards this metadata. A sender can exploit this by inserting a large metadata segment with each byte transferred. The chunk reader now produces an error if the ratio of real body to encoded bytes grows too small.
Affected range | >=1.20.0-0 |
Fixed version | 1.20.7 |
Description
Extremely large RSA keys in certificate chains can cause a client/server to expend significant CPU time verifying signatures.
With fix, the size of RSA keys transmitted during handshakes is restricted to <= 8192 bits.
Based on a survey of publicly trusted RSA keys, there are currently only three certificates in circulation with keys larger than this, and all three appear to be test certificates that are not actively deployed. It is possible there are larger keys in use in private PKIs, but we target the web PKI, so causing breakage here in the interests of increasing the default safety of users of crypto/tls seems reasonable.
github.com/docker/docker 23.0.1+incompatible
(golang)
pkg:golang/github.com/docker/docker@23.0.1+incompatible
Unprotected Alternate Channel
Affected range | >=23.0.0 |
Fixed version | 23.0.3 |
CVSS Score | 7.5 |
CVSS Vector | CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:N/A:L |
Description
Moby is an open source container framework developed by Docker Inc. that is distributed as Docker, Mirantis Container Runtime, and various other downstream projects/products. The Moby daemon component (
dockerd
), which is developed as moby/moby is commonly referred to as Docker.Swarm Mode, which is compiled in and delivered by default in
dockerd
and is thus present in most major Moby downstreams, is a simple, built-in container orchestrator that is implemented through a combination of SwarmKit and supporting network code.The
overlay
network driver is a core feature of Swarm Mode, providing isolated virtual LANs that allow communication between containers and services across the cluster. This driver is an implementation/user of VXLAN, which encapsulates link-layer (Ethernet) frames in UDP datagrams that tag the frame with a VXLAN Network ID (VNI) that identifies the originating overlay network. In addition, the overlay network driver supports an optional, off-by-default encrypted mode, which is especially useful when VXLAN packets traverses an untrusted network between nodes.Encrypted overlay networks function by encapsulating the VXLAN datagrams through the use of the IPsec Encapsulating Security Payload protocol in Transport mode. By deploying IPSec encapsulation, encrypted overlay networks gain the additional properties of source authentication through cryptographic proof, data integrity through check-summing, and confidentiality through encryption.
When setting an endpoint up on an encrypted overlay network, Moby installs three iptables (Linux kernel firewall) rules that enforce both incoming and outgoing IPSec. These rules rely on the
u32
iptables extension provided by thext_u32
kernel module to directly filter on a VXLAN packet's VNI field, so that IPSec guarantees can be enforced on encrypted overlay networks without interfering with other overlay networks or other users of VXLAN.Two iptables rules serve to filter incoming VXLAN datagrams with a VNI that corresponds to an encrypted network and discards unencrypted datagrams. The rules are appended to the end of the
INPUT
filter chain, following any rules that have been previously set by the system administrator. Administrator-set rules take precedence over the rules Moby sets to discard unencrypted VXLAN datagrams, which can potentially admit unencrypted datagrams that should have been discarded.On Red Hat Enterprise Linux and derivatives such as CentOS and Rocky, the
xt_u32
module has been:
- moved to the kernel-modules-extra package and no longer installed by default in RHEL 8.3
- officially deprecated in RHEL 8.6
- removed completely in RHEL 9
These rules are not created when
xt_u32
is unavailable, even though the container is still attached to the network.Impact
Encrypted overlay networks on affected configurations silently accept cleartext VXLAN datagrams that are tagged with the VNI of an encrypted overlay network. As a result, it is possible to inject arbitrary Ethernet frames into the encrypted overlay network by encapsulating them in VXLAN datagrams.
The injection of arbitrary Ethernet frames can enable a Denial of Service attack. A sophisticated attacker may be able to establish a UDP or TCP connection by way of the container’s outbound gateway that would otherwise be blocked by a stateful firewall, or carry out other escalations beyond simple injection by smuggling packets into the overlay network.
Patches
Patches are available in Moby releases 23.0.3, and 20.10.24. As Mirantis Container Runtime's 20.10 releases are numbered differently, users of that platform should update to 20.10.16.
Workarounds
- Close the VXLAN port (by default, UDP port 4789) to incoming traffic at the Internet boundary (see GHSA-vwm3-crmr-xfxw) to prevent all VXLAN packet injection.
- Ensure that the
xt_u32
kernel module is available on all nodes of the Swarm cluster.Background
- #43382 partially discussed this concern, but did not consider the security implications.
- Mirantis FIELD-5788 essentially duplicates #43382, and was created six months earlier; it similarly overlooked the security implications.
- #45118 is the ancestor of the final patches, and was where the security implications were discovered.
Related
- CVE-2023-28841: Encrypted overlay network traffic may be unencrypted
- CVE-2023-28842: Encrypted overlay network with a single endpoint is unauthenticated
- GHSA-vwm3-crmr-xfxw: The Swarm VXLAN port may be exposed to attack due to ambiguous documentation
- GHSA-gvm4-2qqg-m333: Security issues in encrypted overlay networks (libnetwork)
Affected range | >=23.0.0 |
Fixed version | 23.0.3 |
CVSS Score | 6.8 |
CVSS Vector | CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:N/I:H/A:N |
Description
Moby is an open source container framework developed by Docker Inc. that is distributed as Docker, Mirantis Container Runtime, and various other downstream projects/products. The Moby daemon component (
dockerd
), which is developed as moby/moby is commonly referred to as Docker.Swarm Mode, which is compiled in and delivered by default in
dockerd
and is thus present in most major Moby downstreams, is a simple, built-in container orchestrator that is implemented through a combination of SwarmKit and supporting network code.The
overlay
network driver is a core feature of Swarm Mode, providing isolated virtual LANs that allow communication between containers and services across the cluster. This driver is an implementation/user of VXLAN, which encapsulates link-layer (Ethernet) frames in UDP datagrams that tag the frame with a VXLAN Network ID (VNI) that identifies the originating overlay network. In addition, the overlay network driver supports an optional, off-by-default encrypted mode, which is especially useful when VXLAN packets traverses an untrusted network between nodes.Encrypted overlay networks function by encapsulating the VXLAN datagrams through the use of the IPsec Encapsulating Security Payload protocol in Transport mode. By deploying IPSec encapsulation, encrypted overlay networks gain the additional properties of source authentication through cryptographic proof, data integrity through check-summing, and confidentiality through encryption.
When setting an endpoint up on an encrypted overlay network, Moby installs three iptables (Linux kernel firewall) rules that enforce both incoming and outgoing IPSec. These rules rely on the
u32
iptables extension provided by thext_u32
kernel module to directly filter on a VXLAN packet's VNI field, so that IPSec guarantees can be enforced on encrypted overlay networks without interfering with other overlay networks or other users of VXLAN.The
overlay
driver dynamically and lazily defines the kernel configuration for the VXLAN network on each node as containers are attached and detached. Routes and encryption parameters are only defined for destination nodes that participate in the network. The iptables rules that prevent encrypted overlay networks from accepting unencrypted packets are not created until a peer is available with which to communicate.Impact
Encrypted overlay networks silently accept cleartext VXLAN datagrams that are tagged with the VNI of an encrypted overlay network. As a result, it is possible to inject arbitrary Ethernet frames into the encrypted overlay network by encapsulating them in VXLAN datagrams. The implications of this can be quite dire, and GHSA-vwm3-crmr-xfxw should be referenced for a deeper exploration.
Patches
Patches are available in Moby releases 23.0.3, and 20.10.24. As Mirantis Container Runtime's 20.10 releases are numbered differently, users of that platform should update to 20.10.16.
Workarounds
- In multi-node clusters, deploy a global ‘pause’ container for each encrypted overlay network, on every node. For example, use the
registry.k8s.io/pause
image and a--mode global
service.- For a single-node cluster, do not use overlay networks of any sort. Bridge networks provide the same connectivity on a single node and have no multi-node features.
The Swarm ingress feature is implemented using an overlay network, but can be disabled by publishing ports inhost
mode instead ofingress
mode (allowing the use of an external load balancer), and removing theingress
network.- If encrypted overlay networks are in exclusive use, block UDP port 4789 from traffic that has not been validated by IPSec. For example,
iptables -A INPUT -m udp —-dport 4789 -m policy --dir in --pol none -j DROP
.Background
- This issue was discovered while characterizing and mitigating CVE-2023-28840 and CVE-2023-28841.
Related
- CVE-2023-28841: Encrypted overlay network traffic may be unencrypted
- CVE-2023-28840: Encrypted overlay network may be unauthenticated
- GHSA-vwm3-crmr-xfxw: The Swarm VXLAN port may be exposed to attack due to ambiguous documentation
- GHSA-gvm4-2qqg-m333: Security issues in encrypted overlay networks (libnetwork)
Missing Encryption of Sensitive Data
Affected range | >=23.0.0 |
Fixed version | 23.0.3 |
CVSS Score | 6.8 |
CVSS Vector | CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:N/A:N |
Description
Moby is an open source container framework developed by Docker Inc. that is distributed as Docker, Mirantis Container Runtime, and various other downstream projects/products. The Moby daemon component (
dockerd
), which is developed as moby/moby is commonly referred to as Docker.Swarm Mode, which is compiled in and delivered by default in
dockerd
and is thus present in most major Moby downstreams, is a simple, built-in container orchestrator that is implemented through a combination of SwarmKit and supporting network code.The
overlay
network driver is a core feature of Swarm Mode, providing isolated virtual LANs that allow communication between containers and services across the cluster. This driver is an implementation/user of VXLAN, which encapsulates link-layer (Ethernet) frames in UDP datagrams that tag the frame with a VXLAN Network ID (VNI) that identifies the originating overlay network. In addition, the overlay network driver supports an optional, off-by-default encrypted mode, which is especially useful when VXLAN packets traverses an untrusted network between nodes.Encrypted overlay networks function by encapsulating the VXLAN datagrams through the use of the IPsec Encapsulating Security Payload protocol in Transport mode. By deploying IPSec encapsulation, encrypted overlay networks gain the additional properties of source authentication through cryptographic proof, data integrity through check-summing, and confidentiality through encryption.
When setting an endpoint up on an encrypted overlay network, Moby installs three iptables (Linux kernel firewall) rules that enforce both incoming and outgoing IPSec. These rules rely on the
u32
iptables extension provided by thext_u32
kernel module to directly filter on a VXLAN packet's VNI field, so that IPSec guarantees can be enforced on encrypted overlay networks without interfering with other overlay networks or other users of VXLAN.An iptables rule designates outgoing VXLAN datagrams with a VNI that corresponds to an encrypted overlay network for IPsec encapsulation.
On Red Hat Enterprise Linux and derivatives such as CentOS and Rocky, the
xt_u32
module has been:
- moved to the kernel-modules-extra package and no longer installed by default in RHEL 8.3
- officially deprecated in RHEL 8.6
- removed completely in RHEL 9
This rule is not created when
xt_u32
is unavailable, even though the container is still attached to the network.Impact
Encrypted overlay networks on affected platforms silently transmit unencrypted data. As a result,
overlay
networks may appear to be functional, passing traffic as expected, but without any of the expected confidentiality or data integrity guarantees.It is possible for an attacker sitting in a trusted position on the network to read all of the application traffic that is moving across the overlay network, resulting in unexpected secrets or user data disclosure. Thus, because many database protocols, internal APIs, etc. are not protected by a second layer of encryption, a user may rely on Swarm encrypted overlay networks to provide confidentiality, which due to this vulnerability is no longer guaranteed.
Patches
Patches are available in Moby releases 23.0.3, and 20.10.24. As Mirantis Container Runtime's 20.10 releases are numbered differently, users of that platform should update to 20.10.16.
Workarounds
- Close the VXLAN port (by default, UDP port 4789) to outgoing traffic at the Internet boundary (see GHSA-vwm3-crmr-xfxw) in order to prevent unintentionally leaking unencrypted traffic over the Internet.
- Ensure that the
xt_u32
kernel module is available on all nodes of the Swarm cluster.Background
- #43382 partially discussed this concern, but did not consider the security implications.
- Mirantis FIELD-5788 essentially duplicates #43382, and was created six months earlier; it similarly overlooked the security implications.
- #45118 is the ancestor of the final patches, and was where the security implications were discovered.
Related
- CVE-2023-28840: Encrypted overlay network may be unauthenticated
- CVE-2023-28842: Encrypted overlay network with a single endpoint is unauthenticated
- GHSA-vwm3-crmr-xfxw: The Swarm VXLAN port may be exposed to attack due to ambiguous documentation
- GHSA-gvm4-2qqg-m333: Security issues in encrypted overlay networks (libnetwork)
Affected range | <24.0.7 |
Fixed version | 24.0.7 |
Description
Intel's RAPL (Running Average Power Limit) feature, introduced by the Sandy Bridge microarchitecture, provides software insights into hardware energy consumption. To facilitate this, Intel introduced the powercap framework in Linux kernel 3.13, which reads values via relevant MSRs (model specific registers) and provides unprivileged userspace access via
sysfs
. As RAPL is an interface to access a hardware feature, it is only available when running on bare metal with the module compiled into the kernel.By 2019, it was realized that in some cases unprivileged access to RAPL readings could be exploited as a power-based side-channel against security features including AES-NI (potentially inside a SGX enclave) and KASLR (kernel address space layout randomization). Also known as the PLATYPUS attack, Intel assigned CVE-2020-8694 and CVE-2020-8695, and AMD assigned CVE-2020-12912.
Several mitigations were applied; Intel reduced the sampling resolution via a microcode update, and the Linux kernel prevents access by non-root users since 5.10. However, this kernel-based mitigation does not apply to many container-based scenarios:
- Unless using user namespaces, root inside a container has the same level of privilege as root outside the container, but with a slightly more narrow view of the system
sysfs
is mounted inside containers read-only; however only read access is needed to carry out this attack on an unpatched CPUWhile this is not a direct vulnerability in container runtimes, defense in depth and safe defaults are valuable and preferred, especially as this poses a risk to multi-tenant container environments running directly on affected hardware. This is provided by masking
/sys/devices/virtual/powercap
in the default mount configuration, and adding an additional set of rules to deny it in the default AppArmor profile.While
sysfs
is not the only way to read from the RAPL subsystem, other ways of accessing it require additional capabilities such asCAP_SYS_RAWIO
which is not available to containers by default, orperf
paranoia level less than 1, which is a non-default kernel tunable.References
- https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8694
- https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8695
- https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-12912
- https://platypusattack.com/
- https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=949dd0104c496fa7c14991a23c03c62e44637e71
- https://web.eece.maine.edu/~vweaver/projects/rapl/
OWASP Top Ten 2017 Category A9 - Using Components with Known Vulnerabilities
Affected range | <24.0.7 |
Fixed version | v24.0.7 |
Description
Intel's RAPL (Running Average Power Limit) feature, introduced by the Sandy Bridge microarchitecture, provides software insights into hardware energy consumption. To facilitate this, Intel introduced the powercap framework in Linux kernel 3.13, which reads values via relevant MSRs (model specific registers) and provides unprivileged userspace access via
sysfs
.
golang.org/x/net 0.8.0
(golang)
pkg:golang/golang.org/x/net@0.8.0
Uncontrolled Resource Consumption
Affected range | <0.17.0 |
Fixed version | 0.17.0 |
CVSS Score | 7.5 |
CVSS Vector | CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H |
Description
A malicious HTTP/2 client which rapidly creates requests and immediately resets them can cause excessive server resource consumption. While the total number of requests is bounded by the http2.Server.MaxConcurrentStreams setting, resetting an in-progress request allows the attacker to create a new request while the existing one is still executing.
With the fix applied, HTTP/2 servers now bound the number of simultaneously executing handler goroutines to the stream concurrency limit (MaxConcurrentStreams). New requests arriving when at the limit (which can only happen after the client has reset an existing, in-flight request) will be queued until a handler exits. If the request queue grows too large, the server will terminate the connection.
This issue is also fixed in golang.org/x/net/http2 for users manually configuring HTTP/2.
The default stream concurrency limit is 250 streams (requests) per HTTP/2 connection. This value may be adjusted using the golang.org/x/net/http2 package; see the Server.MaxConcurrentStreams setting and the ConfigureServer function.
Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
Affected range | <0.13.0 |
Fixed version | 0.13.0 |
CVSS Score | 6.1 |
CVSS Vector | CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N |
Description
Text nodes not in the HTML namespace are incorrectly literally rendered, causing text which should be escaped to not be. This could lead to an XSS attack.
Uncontrolled Resource Consumption
Affected range | <0.17.0 |
Fixed version | 0.17.0 |
CVSS Score | 5.3 |
CVSS Vector | CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L |
Description
HTTP/2 Rapid reset attack
The HTTP/2 protocol allows clients to indicate to the server that a previous stream should be canceled by sending a RST_STREAM frame. The protocol does not require the client and server to coordinate the cancellation in any way, the client may do it unilaterally. The client may also assume that the cancellation will take effect immediately when the server receives the RST_STREAM frame, before any other data from that TCP connection is processed.
Abuse of this feature is called a Rapid Reset attack because it relies on the ability for an endpoint to send a RST_STREAM frame immediately after sending a request frame, which makes the other endpoint start working and then rapidly resets the request. The request is canceled, but leaves the HTTP/2 connection open.
The HTTP/2 Rapid Reset attack built on this capability is simple: The client opens a large number of streams at once as in the standard HTTP/2 attack, but rather than waiting for a response to each request stream from the server or proxy, the client cancels each request immediately.
The ability to reset streams immediately allows each connection to have an indefinite number of requests in flight. By explicitly canceling the requests, the attacker never exceeds the limit on the number of concurrent open streams. The number of in-flight requests is no longer dependent on the round-trip time (RTT), but only on the available network bandwidth.
In a typical HTTP/2 server implementation, the server will still have to do significant amounts of work for canceled requests, such as allocating new stream data structures, parsing the query and doing header decompression, and mapping the URL to a resource. For reverse proxy implementations, the request may be proxied to the backend server before the RST_STREAM frame is processed. The client on the other hand paid almost no costs for sending the requests. This creates an exploitable cost asymmetry between the server and the client.
Multiple software artifacts implementing HTTP/2 are affected. This advisory was originally ingested from the
swift-nio-http2
repo advisory and their original conent follows.swift-nio-http2 specific advisory
swift-nio-http2 is vulnerable to a denial-of-service vulnerability in which a malicious client can create and then reset a large number of HTTP/2 streams in a short period of time. This causes swift-nio-http2 to commit to a large amount of expensive work which it then throws away, including creating entirely new
Channel
s to serve the traffic. This can easily overwhelm anEventLoop
and prevent it from making forward progress.swift-nio-http2 1.28 contains a remediation for this issue that applies reset counter using a sliding window. This constrains the number of stream resets that may occur in a given window of time. Clients violating this limit will have their connections torn down. This allows clients to continue to cancel streams for legitimate reasons, while constraining malicious actors.
github.com/docker/distribution 2.8.1+incompatible
(golang)
pkg:golang/github.com/docker/distribution@2.8.1+incompatible
Undefined Behavior for Input to API
Affected range | <2.8.2-beta.1 |
Fixed version | 2.8.2-beta.1 |
CVSS Score | 7.5 |
CVSS Vector | CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H |
Description
Impact
Systems that run
distribution
built after a specific commit running on memory-restricted environments can suffer from denial of service by a crafted malicious/v2/_catalog
API endpoint request.Patches
Upgrade to at least 2.8.2-beta.1 if you are running
v2.8.x
release. If you use the code from the main branch, update at least to the commit after f55a6552b006a381d9167e328808565dd2bf77dc.Workarounds
There is no way to work around this issue without patching. Restrict access to the affected API endpoint: see the recommendations section.
References
/v2/_catalog
endpoint accepts a parameter to control the maximum amount of records returned (query string:n
).When not given the default
n=100
is used. The server trusts thatn
has an acceptable value, however when using a
maliciously large value, it allocates an array/slice ofn
of strings before filling the slice with data.This behaviour was introduced ~7yrs ago [1].
Recommendation
The
/v2/_catalog
endpoint was designed specifically to do registry syncs with search or other API systems. Such an endpoint would create a lot of load on the backend system, due to overfetch required to serve a request in certain implementations.Because of this, we strongly recommend keeping this API endpoint behind heightened privilege and avoiding leaving it exposed to the internet.
For more information
If you have any questions or comments about this advisory:
- Open an issue in distribution repository
- Email us at cncf-distribution-security@lists.cncf.io
[1] faulty commit
golang.org/x/crypto 0.6.0
(golang)
pkg:golang/golang.org/x/crypto@0.6.0
Insufficient Verification of Data Authenticity
Affected range | <0.17.0 |
Fixed version | 0.17.0 |
CVSS Score | 5.9 |
CVSS Vector | CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:H/A:N |
Description
Summary
Terrapin is a prefix truncation attack targeting the SSH protocol. More precisely, Terrapin breaks the integrity of SSH's secure channel. By carefully adjusting the sequence numbers during the handshake, an attacker can remove an arbitrary amount of messages sent by the client or server at the beginning of the secure channel without the client or server noticing it.
Mitigations
To mitigate this protocol vulnerability, OpenSSH suggested a so-called "strict kex" which alters the SSH handshake to ensure a Man-in-the-Middle attacker cannot introduce unauthenticated messages as well as convey sequence number manipulation across handshakes.
Warning: To take effect, both the client and server must support this countermeasure.
As a stop-gap measure, peers may also (temporarily) disable the affected algorithms and use unaffected alternatives like AES-GCM instead until patches are available.
Details
The SSH specifications of ChaCha20-Poly1305 (chacha20-poly1305@openssh.com) and Encrypt-then-MAC (*-etm@openssh.com MACs) are vulnerable against an arbitrary prefix truncation attack (a.k.a. Terrapin attack). This allows for an extension negotiation downgrade by stripping the SSH_MSG_EXT_INFO sent after the first message after SSH_MSG_NEWKEYS, downgrading security, and disabling attack countermeasures in some versions of OpenSSH. When targeting Encrypt-then-MAC, this attack requires the use of a CBC cipher to be practically exploitable due to the internal workings of the cipher mode. Additionally, this novel attack technique can be used to exploit previously unexploitable implementation flaws in a Man-in-the-Middle scenario.
The attack works by an attacker injecting an arbitrary number of SSH_MSG_IGNORE messages during the initial key exchange and consequently removing the same number of messages just after the initial key exchange has concluded. This is possible due to missing authentication of the excess SSH_MSG_IGNORE messages and the fact that the implicit sequence numbers used within the SSH protocol are only checked after the initial key exchange.
In the case of ChaCha20-Poly1305, the attack is guaranteed to work on every connection as this cipher does not maintain an internal state other than the message's sequence number. In the case of Encrypt-Then-MAC, practical exploitation requires the use of a CBC cipher; while theoretical integrity is broken for all ciphers when using this mode, message processing will fail at the application layer for CTR and stream ciphers.
For more details see https://terrapin-attack.com.
Impact
This attack targets the specification of ChaCha20-Poly1305 (chacha20-poly1305@openssh.com) and Encrypt-then-MAC (*-etm@openssh.com), which are widely adopted by well-known SSH implementations and can be considered de-facto standard. These algorithms can be practically exploited; however, in the case of Encrypt-Then-MAC, we additionally require the use of a CBC cipher. As a consequence, this attack works against all well-behaving SSH implementations supporting either of those algorithms and can be used to downgrade (but not fully strip) connection security in case SSH extension negotiation (RFC8308) is supported. The attack may also enable attackers to exploit certain implementation flaws in a man-in-the-middle (MitM) scenario.
Attempting automerge. See https://github.com/uniget-org/tools/actions/runs/7301104658. |
No description provided.