Skip to content

Commit

Permalink
Merge branch 'master' into fix/encoder_single_series
Browse files Browse the repository at this point in the history
  • Loading branch information
dennisbader committed Sep 13, 2022
2 parents 0a3db5c + 28ca88d commit 6ff4e22
Show file tree
Hide file tree
Showing 2 changed files with 4 additions and 4 deletions.
6 changes: 3 additions & 3 deletions darts/models/forecasting/prophet_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -155,7 +155,7 @@ def _predict(
predict_df = self._generate_predict_df(n=n, future_covariates=future_covariates)

if num_samples == 1:
forecast = self.model.predict(predict_df)["yhat"].values
forecast = self.model.predict(predict_df, vectorized=True)["yhat"].values
else:
forecast = np.expand_dims(
self._stochastic_samples(predict_df, n_samples=num_samples), axis=1
Expand Down Expand Up @@ -203,7 +203,7 @@ def _stochastic_samples(self, predict_df, n_samples) -> np.ndarray:

predict_df["trend"] = self.model.predict_trend(predict_df)

forecast = self.model.sample_posterior_predictive(predict_df)
forecast = self.model.sample_posterior_predictive(predict_df, vectorized=True)

# reset default number of uncertainty_samples
self.model.uncertainty_samples = n_samples_default
Expand All @@ -221,7 +221,7 @@ def predict_raw(

predict_df = self._generate_predict_df(n=n, future_covariates=future_covariates)

return self.model.predict(predict_df)
return self.model.predict(predict_df, vectorized=True)

def add_seasonality(
self,
Expand Down
2 changes: 1 addition & 1 deletion requirements/core.txt
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ nfoursid>=1.0.0
numpy>=1.19.0
pandas>=1.0.5
pmdarima>=1.8.0
prophet>=1.1
prophet>=1.1.1
requests>=2.22.0
scikit-learn>=1.0.1
scipy>=1.3.2
Expand Down

0 comments on commit 6ff4e22

Please sign in to comment.