Skip to content

Commit

Permalink
Feat/more losses (#845)
Browse files Browse the repository at this point in the history
* added some loss functions

* remove M3 loss which seems bogus

* add unit tests for losses

* correct unit test

* correct unit test

* correct unit test

* added NINF case

* add optional denominator computation in MAPE loss

* better MAPE/MAE split

* simplify MAPE loss

* simplify loss tests

* remove a print statement

* Update darts/utils/losses.py

Co-authored-by: Dennis Bader <dennis.bader@gmx.ch>

Co-authored-by: Dennis Bader <dennis.bader@gmx.ch>
  • Loading branch information
hrzn and dennisbader authored Mar 19, 2022
1 parent a7abedf commit eda8f94
Show file tree
Hide file tree
Showing 2 changed files with 135 additions and 0 deletions.
40 changes: 40 additions & 0 deletions darts/tests/utils/test_losses.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
import torch

from darts.tests.base_test_class import DartsBaseTestClass
from darts.utils.losses import MAELoss, MapeLoss, SmapeLoss


class LossesTestCase(DartsBaseTestClass):
x = torch.tensor([1.1, 2.2, 0.6345, -1.436])
y = torch.tensor([1.5, 0.5])

def helper_test_loss(self, exp_loss_val, exp_w_grad, loss_fn):
W = torch.tensor([[0.1, -0.2, 0.3, -0.4], [-0.8, 0.7, -0.6, 0.5]])
W.requires_grad = True
y_hat = W @ self.x
lval = loss_fn(y_hat, self.y)
lval.backward()

self.assertTrue(torch.allclose(lval, exp_loss_val, atol=1e-3))
self.assertTrue(torch.allclose(W.grad, exp_w_grad, atol=1e-3))

def test_smape_loss(self):
exp_val = torch.tensor(0.7753)
exp_grad = torch.tensor(
[[-0.2843, -0.5685, -0.1640, 0.3711], [-0.5859, -1.1718, -0.3380, 0.7649]]
)
self.helper_test_loss(exp_val, exp_grad, SmapeLoss())

def test_mape_loss(self):
exp_val = torch.tensor(1.2937)
exp_grad = torch.tensor(
[[-0.3667, -0.7333, -0.2115, 0.4787], [-1.1000, -2.2000, -0.6345, 1.4360]]
)
self.helper_test_loss(exp_val, exp_grad, MapeLoss())

def test_mae_loss(self):
exp_val = torch.tensor(1.0020)
exp_grad = torch.tensor(
[[-0.5500, -1.1000, -0.3173, 0.7180], [-0.5500, -1.1000, -0.3173, 0.7180]]
)
self.helper_test_loss(exp_val, exp_grad, MAELoss())
95 changes: 95 additions & 0 deletions darts/utils/losses.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
"""
PyTorch Loss Functions
----------------------
"""
# Inspiration: https://github.com/ElementAI/N-BEATS/blob/master/common/torch/losses.py

import numpy as np
import torch
import torch.nn as nn


def _divide_no_nan(a, b):
"""
a/b where the resulted NaN or Inf are replaced by 0.
"""
result = a / b
result[result != result] = 0.0
result[result == np.inf] = 0.0
result[result == np.NINF] = 0.0
return result


class SmapeLoss(nn.Module):
def __init__(self, block_denom_grad: bool = True):
"""
sMAPE loss as defined in https://robjhyndman.com/hyndsight/smape/ (Chen and Yang 2004)
Given a time series of actual values :math:`y_t` and a time series of predicted values :math:`\\hat{y}_t`
both of length :math:`T`, it is computed as
.. math::
\\frac{1}{T}
\\sum_{t=1}^{T}{\\frac{\\left| y_t - \\hat{y}_t \\right|}
{\\left| y_t \\right| + \\left| \\hat{y}_t \\right|} }.
The results of divisions yielding NaN or Inf are replaced by 0. Note that we drop the coefficient of
200 usually used for computing sMAPE values, as it impacts only the magnitude of the gradients
and not their direction.
Parameters
----------
block_denom_grad
Whether to stop the gradient in the denomitator
"""
super().__init__()
self.block_denom_grad = block_denom_grad

def forward(self, inpt, tgt):
num = torch.abs(tgt - inpt)
denom = torch.abs(tgt) + torch.abs(inpt)
if self.block_denom_grad:
denom = denom.detach()
return torch.mean(_divide_no_nan(num, denom))


class MapeLoss(nn.Module):
def __init__(self):
"""
MAPE loss as defined in: https://en.wikipedia.org/wiki/Mean_absolute_percentage_error.
Given a time series of actual values :math:`y_t` and a time series of predicted values :math:`\\hat{y}_t`
both of length :math:`T`, it is computed as
.. math::
\\frac{1}{T}
\\sum_{t=1}^{T}{\\frac{\\left| y_t - \\hat{y}_t \\right|}{y_t}}.
The results of divisions yielding NaN or Inf are replaced by 0. Note that we drop the coefficient of
100 usually used for computing MAPE values, as it impacts only the magnitude of the gradients
and not their direction.
"""
super().__init__()

def forward(self, inpt, tgt):
return torch.mean(torch.abs(_divide_no_nan(tgt - inpt, tgt)))


class MAELoss(nn.Module):
def __init__(self):
"""
MAE loss as defined in: https://en.wikipedia.org/wiki/Mean_absolute_error.
Given a time series of actual values :math:`y_t` and a time series of predicted values :math:`\\hat{y}_t`
both of length :math:`T`, it is computed as
.. math::
\\frac{1}{T}
\\sum_{t=1}^{T}{\\left| y_t - \\hat{y}_t \\right|}.
Note that this is the same as torch.nn.L1Loss.
"""
super().__init__()

def forward(self, inpt, tgt):
return torch.mean(torch.abs(tgt - inpt))

0 comments on commit eda8f94

Please sign in to comment.