Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix/exp smooth constructor args #2059

Merged
merged 5 commits into from
Nov 8, 2023
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 10 additions & 2 deletions darts/models/forecasting/exponential_smoothing.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
---------------------
"""

from typing import Optional
from typing import Any, Dict, Optional

import numpy as np
import statsmodels.tsa.holtwinters as hw
Expand All @@ -24,7 +24,8 @@ def __init__(
seasonal: Optional[SeasonalityMode] = SeasonalityMode.ADDITIVE,
seasonal_periods: Optional[int] = None,
random_state: int = 0,
**fit_kwargs,
kwargs: Optional[Dict[str, Any]] = None,
**fit_kwargs
):

"""Exponential Smoothing
Expand Down Expand Up @@ -61,6 +62,11 @@ def __init__(
seasonal_periods
The number of periods in a complete seasonal cycle, e.g., 4 for quarterly data or 7 for daily
data with a weekly cycle. If not set, inferred from frequency of the series.
kwargs
Some optional keyword arguments that will be used to call
:func:`statsmodels.tsa.holtwinters.ExponentialSmoothing()`.
See `the documentation
<https://www.statsmodels.org/stable/generated/statsmodels.tsa.holtwinters.ExponentialSmoothing.html>`_.
fit_kwargs
Some optional keyword arguments that will be used to call
:func:`statsmodels.tsa.holtwinters.ExponentialSmoothing.fit()`.
Expand Down Expand Up @@ -91,6 +97,7 @@ def __init__(
self.seasonal = seasonal
self.infer_seasonal_periods = seasonal_periods is None
self.seasonal_periods = seasonal_periods
self.constructor_kwargs = dict() if kwargs is None else kwargs
self.fit_kwargs = fit_kwargs
self.model = None
np.random.seed(random_state)
Expand Down Expand Up @@ -120,6 +127,7 @@ def fit(self, series: TimeSeries):
seasonal_periods=seasonal_periods_param,
freq=series.freq if series.has_datetime_index else None,
dates=series.time_index if series.has_datetime_index else None,
**self.constructor_kwargs
)
hw_results = hw_model.fit(**self.fit_kwargs)
self.model = hw_results
Expand Down
79 changes: 65 additions & 14 deletions darts/tests/models/forecasting/test_exponential_smoothing.py
Original file line number Diff line number Diff line change
@@ -1,41 +1,92 @@
import numpy as np
import pytest

from darts import TimeSeries
from darts.models import ExponentialSmoothing
from darts.utils import timeseries_generation as tg


class TestExponentialSmoothing:
def helper_test_seasonality_inference(self, freq_string, expected_seasonal_periods):
series = tg.sine_timeseries(length=200, freq=freq_string)
model = ExponentialSmoothing()
model.fit(series)
assert model.seasonal_periods == expected_seasonal_periods
series = tg.sine_timeseries(length=100, freq="H")

def test_seasonality_inference(self):

# test `seasonal_periods` inference for datetime indices
freq_str_seasonality_periods_tuples = [
@pytest.mark.parametrize(
"freq_string,expected_seasonal_periods",
[
("D", 7),
("H", 24),
("M", 12),
("W", 52),
("Q", 4),
("B", 5),
]
for tuple in freq_str_seasonality_periods_tuples:
self.helper_test_seasonality_inference(*tuple)
],
)
def test_seasonality_inference(
self, freq_string: str, expected_seasonal_periods: int
):
series = tg.sine_timeseries(length=200, freq=freq_string)
model = ExponentialSmoothing()
model.fit(series)
assert model.seasonal_periods == expected_seasonal_periods

# test default selection for integer index
def test_default_parameters(self):
"""Test default selection for integer index"""
series = TimeSeries.from_values(np.arange(1, 30, 1))
model = ExponentialSmoothing()
model.fit(series)
assert model.seasonal_periods == 12

# test whether a model that inferred a seasonality period before will do it again for a new series
def test_multiple_fit(self):
"""Test whether a model that inferred a seasonality period before will do it again for a new series"""
series1 = tg.sine_timeseries(length=100, freq="M")
series2 = tg.sine_timeseries(length=100, freq="D")
model = ExponentialSmoothing()
model.fit(series1)
model.fit(series2)
assert model.seasonal_periods == 7

def test_constructor_kwargs(self):
"""Using kwargs to pass additional parameters to the constructor"""
constructor_kwargs = {
"initialization_method": "known",
"initial_level": 0.5,
"initial_trend": 0.2,
"initial_seasonal": np.arange(1, 25),
}
model = ExponentialSmoothing(kwargs=constructor_kwargs)
model.fit(self.series)
# must be checked separately, name is not consistent
np.testing.assert_array_almost_equal(
model.model.model.params["initial_seasons"],
constructor_kwargs["initial_seasonal"],
)
for param_name in ["initial_level", "initial_trend"]:
assert (
model.model.model.params[param_name] == constructor_kwargs[param_name]
)

def test_fit_kwargs(self):
"""Using kwargs to pass additional parameters to the fit()"""
# using default optimization method
model = ExponentialSmoothing()
model.fit(self.series)
assert model.fit_kwargs == {}
pred = model.predict(n=2)

model_bis = ExponentialSmoothing()
model_bis.fit(self.series)
assert model_bis.fit_kwargs == {}
pred_bis = model_bis.predict(n=2)

# two methods with the same parameters should yield the same forecasts
assert pred.time_index.equals(pred_bis.time_index)
np.testing.assert_array_almost_equal(pred.values(), pred_bis.values())

# change optimization method
model_ls = ExponentialSmoothing(method="least_squares")
model_ls.fit(self.series)
assert model_ls.fit_kwargs == {"method": "least_squares"}
pred_ls = model_ls.predict(n=2)

# forecasts should be slightly different
assert pred.time_index.equals(pred_ls.time_index)
assert all(np.not_equal(pred.values(), pred_ls.values()))
Loading