by Asad Aali and Jon Tamir, UT CSI Lab.
Source code for paper Enhancing Deep Learning-Driven Multi-Coil MRI Reconstruction via Self-Supervised Denoising.
Pipeline describing the techniques utilized for: (i) GSURE Denoising, (ii) GSURE-DPS Training/Inference, and (iii) GSURE-MoDL Training/Inference.
@misc{chung2023dps,
title={Diffusion Posterior Sampling for General Noisy Inverse Problems},
author={Hyungjin Chung and Jeongsol Kim and Michael T. Mccann and Marc L. Klasky and Jong Chul Ye},
year={2023},
eprint={2209.14687},
archivePrefix={arXiv},
primaryClass={stat.ML}
}
@article{karras2022elucidating,
title={Elucidating the design space of diffusion-based generative models},
author={Karras, Tero and Aittala, Miika and Aila, Timo and Laine, Samuli},
journal={Advances in neural information processing systems},
volume={35},
pages={26565--26577},
year={2022}
}
@article{aggarwal2018modl,
title={MoDL: Model-based deep learning architecture for inverse problems},
author={Aggarwal, Hemant K and Mani, Merry P and Jacob, Mathews},
journal={IEEE transactions on medical imaging},
volume={38},
number={2},
pages={394--405},
year={2018},
publisher={IEEE}
}
@article{eldar2008generalized,
title={Generalized SURE for exponential families: Applications to regularization},
author={Eldar, Yonina C},
journal={IEEE Transactions on Signal Processing},
volume={57},
number={2},
pages={471--481},
year={2008},
publisher={IEEE}
}