Skip to content

Latest commit

 

History

History
92 lines (58 loc) · 3.07 KB

README.rst

File metadata and controls

92 lines (58 loc) · 3.07 KB

ShapKa: Customer Satisfaction Key Drivers based on Shapley values and Kano model

Codacy Badge https://travis-ci.org/uyanik/ShapKa.svg?branch=master Documentation Status

Installation

Use the following command to install the package:

pip install ShapKa

Usage

Use the following command for a key dissatisfaction drivers analysis (kda) :

import pandas as pd
from ShapKa.kanomodel import KanoModel

# Load data
df = pd.read_csv('data/example_03.csv')

# Define X and Y variables names
y_varname = 'Overall Satisfaction'
weight_varname = 'Weight'
X_varnames = df.columns.values.tolist()
X_varnames.remove(y_varname)
X_varnames.remove(weight_varname)

# Run analysis to identify key dissatisfiers
model = KanoModel(df,
                  y_varname, X_varnames,
                  analysis = 'kda',
                  y_dissat_upperbound = 6, y_sat_lowerbound = 9,
                  X_dissat_upperbound = 6, X_sat_lowerbound = 9,
                  weight_varname = weight_varname)

kda = model.key_drivers() ;kda

Here is the ouput :

img/output_ShapKa.png

Replace 'kda' by 'kea' in the analysis parameter if you want to identify key enhancers (kea) instead of key dissatisfiers

Documentation

Credits

References

  • Conklin, Michael & Powaga, Ken & Lipovetsky, Stan. (2004). Customer satisfaction analysis: Identification of key drivers. European Journal of Operational Research. 154. 819-827. 10.1016/S0377-2217(02)00877-9.
  • Sage - Open Source Mathematical Software : https://github.com/sagemath/sage