Skip to content

v1nc3nt27/athene_system

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Requirements

  • Software dependencies
    • python >= 3.4 (tested with 3.4.0)

Installation

  1. Install required python packages.

     pip install -r requirements.txt
    
  2. Parts of the Natural Language Toolkit (NLTK) might need to be installed manually.

     python -c "import nltk; nltk.download("stopwords"); nltk.download("punkt"); nltk.download("wordnet")"
    
  3. Installation of the packages for anaconda3 (python 3)

    e.g.: python3.4 -m pip $i install nltk python3.4 -m pip $i install -r requirements.txt

  4. Copy Word2Vec GoogleNews-vectors-negative300.bin.gz in folder fn_classifier/data/embeddings/google_news/ (download link: https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit)

  5. Download http://www.cis.upenn.edu/~ccb/ppdb/release-1.0/ppdb-1.0-xl-lexical.gz Extract it in folder fn_classifier/data/ppdb/

  6. To use the Stanford-parser an instance has to be started in parallel: Download Stanford CoreNLP from: https://stanfordnlp.github.io/CoreNLP/index.html Extract anywhere and execute following command: java -mx4g -cp "*" edu.stanford.nlp.pipeline.StanfordCoreNLPServer -port 9020

Additional notes

  • In order to reproduce the classification results of the best submission at the day of the FNC-1, it is mandatory to use tensorflow v0.9.0 (ideally GPU version) and the exact library versions stated in requirements.txt, including python 3.4.

To Run

  1. python pipeline.py --help for more details

     python pipeline.py --pipeline_type=train
    

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 57.8%
  • Python 42.2%