-
Notifications
You must be signed in to change notification settings - Fork 17
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
22 changed files
with
5,486 additions
and
43 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,25 @@ | ||
FROM nvidia/cuda:10.0-devel-ubuntu18.04 | ||
|
||
#RUN yes | unminimize | ||
|
||
RUN apt-get update && apt-get install -y wget bzip2 | ||
RUN wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O miniconda.sh | ||
RUN bash miniconda.sh -b -p /opt/conda && \ | ||
rm miniconda.sh | ||
ENV PATH="/opt/conda/bin:${PATH}" | ||
RUN conda config --set always_yes yes | ||
|
||
RUN conda install pytorch==1.3.1 torchvision==0.4.2 cudatoolkit=10.0 -c pytorch | ||
RUN pip install scikit-image tqdm pyyaml easydict future pip | ||
RUN apt-get install unzip | ||
|
||
COPY ./ /obow | ||
RUN pip install -e /obow | ||
|
||
WORKDIR /obow | ||
|
||
# Test imports | ||
RUN python -c "" | ||
RUN python -c "import main_linear_classification" | ||
RUN python -c "import main_obow" | ||
RUN python -c "import main_semisupervised" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,16 +1,226 @@ | ||
# Online Bag-of-Visual-Words Generation for Unsupervised Representation Learning | ||
|
||
![OBoW](./img/obow_overview.png) | ||
|
||
This is a PyTorch implementation of the OBoW paper: | ||
|
||
If you use the OBoW code or framework in your research, please consider citing: | ||
|
||
``` | ||
@article{gidaris2020obow, | ||
title={Online Bag-of-Visual-Words Generation for Unsupervised Representation Learning}, | ||
author={Gidaris, Spyros and Bursuc, Andrei and Komodakis, Nikos and P{\'e}rez, Patrick and Cord, Matthieu}, | ||
journal={arXiv preprint arXiv:2012.xxxx}, | ||
year={2020} | ||
} | ||
``` | ||
# **Online Bag-of-Visual-Words Generationfor Unsupervised Representation Learning** | ||
|
||
![OBoW](./img/obow_overview.png) | ||
|
||
This is a PyTorch implementation of the OBoW paper: | ||
**Title:** "Online Bag-of-Visual-Words Generationfor Unsupervised Representation Learning" | ||
**Authors:** S. Gidaris, A. Bursuc, G. Puy, N. Komodakis, M. Cord, and P. Pérez | ||
|
||
If you use the OBoW code or framework in your research, please consider citing: | ||
|
||
``` | ||
@article{gidaris2020obow, | ||
title={Online Bag-of-Visual-Words Generation for Unsupervised Representation Learning}, | ||
author={Gidaris, Spyros and Bursuc, Andrei and Komodakis, Nikos and Cord, Matthieu and P{\'e}rez, Patrick}, | ||
journal={arXiv preprint arXiv:2012.xxxx}, | ||
year={2020} | ||
} | ||
``` | ||
|
||
### **License** | ||
This code is released under the MIT License (refer to the LICENSE file for details). | ||
|
||
## **Preparation** | ||
|
||
### **Pre-requisites** | ||
* Python 3.7 | ||
* Pytorch >= 1.3.1 (tested with 1.3.1) | ||
* CUDA 10.0 or higher | ||
|
||
### **Installation** | ||
|
||
**(1)** Clone the repo: | ||
```bash | ||
$ git clone https://github.com/valeoai/obow | ||
``` | ||
|
||
|
||
**(2)** Install this repository and the dependencies using pip: | ||
```bash | ||
$ pip install -e ./obow | ||
``` | ||
|
||
|
||
With this, you can edit the obow code on the fly and import function | ||
and classes of obow in other projects as well. | ||
|
||
**(3)** Optional. To uninstall this package, run: | ||
```bash | ||
$ pip uninstall obow | ||
``` | ||
|
||
|
||
**(4)** Create *experiment* directory: | ||
```bash | ||
$ cd obow | ||
$ mkdir ./experiments | ||
``` | ||
|
||
|
||
You can take a look at the [Dockerfile](./Dockerfile) if you are uncertain | ||
about the steps to install this project. | ||
|
||
|
||
### **Download pre-trained models (optional).** | ||
|
||
TODO | ||
|
||
|
||
## **Experiments: Training and evaluating ImageNet self-supervised features.** | ||
|
||
### **Train a ResNet50-based OBoW model (full solution) on the ImageneNet dataset.** | ||
|
||
```bash | ||
# Run from the obow directory | ||
# Train the OBoW model. | ||
$ python main_obow.py --config=ImageNetFull/ResNet50_OBoW_full --workers=32 -p=250 --dst-dir=./experiments/ --data-dir=/datasets_local/ImageNet --multiprocessing-distributed --dist-url='tcp://127.0.0.1:4444' | ||
``` | ||
|
||
|
||
Here with `--data-dir=/datasets_local/ImageNet` it is assumed that the ImageNet | ||
dataset is at the location `/datasets_local/ImageNet`. | ||
The configuration file for running the above experiment, which is specified by | ||
the `--config` argument, is located at: `./config/ImageNetFull/ResNet50_OBoW_full.py`. | ||
Note that all the experiment configuration files are placed in the `./config/` | ||
directory. The data of this experiment, such as checkpoints and logs, will be | ||
stored at `./experiments/ImageNetFull/ResNet50_OBoW_full`. | ||
|
||
### **Evaluate on the ImageNet linear classification protocol** | ||
|
||
Train an ImageNet linear classification model on top of frozen features learned by student of the OBoW model. | ||
```bash | ||
# Run from the obow directory | ||
# Train and evaluate a linear classifier for the 1000-way ImageNet classification task. | ||
$ python main_linear_classification.py --config=ImageNetFull/ResNet50_OBoW_full --workers=32 -p=250 -b 1024 --wd 0.0 --lr 10.0 --epochs 100 --cos-schedule --dataset ImageNet --name "ImageNet_LinCls_b1024_wd0lr10_e100" --dst-dir=./experiments/ --data-dir=/datasets_local/ImageNet --multiprocessing-distributed --dist-url='tcp://127.0.0.1:4444' | ||
``` | ||
|
||
|
||
The data of this experiment, such as checkpoints and logs, will be | ||
stored at `./experiments/ImageNetFull/ResNet50_OBoW_full/ImageNet_LinCls_b1024_wd0lr10_e100`. | ||
|
||
### **Evaluate on the Places205 linear classification protocol** | ||
|
||
Train an Places205 linear classification model on top of frozen features extracted from the OBoW model. | ||
```bash | ||
# Run from the obow directory | ||
# Train and evaluate a linear classifier for the 205-way Places205 classification task. | ||
$ python main_linear_classification.py --config=ImageNetFull/ResNet50_OBoW_full --dataset Places205 --batch-norm --workers=32 -p=500 -b 256 --wd 0.00001 --lr 0.01 --epochs 28 --schedule 10 20 --name "Places205_LinCls_b256_wd1e4lr0p01_e28" --dst-dir=./experiments/ --data-dir=/datasets_local/Places205 --multiprocessing-distributed --dist-url='tcp://127.0.0.1:4444' | ||
``` | ||
|
||
|
||
The data of this experiment, such as checkpoints and logs, will be | ||
stored at `./experiments/ImageNetFull/ResNet50_OBoW_full/Places205_LinCls_b256_wd1e4lr0p01_e28`. | ||
|
||
### **ImageNet semi-supervised evaluation setting.** | ||
|
||
```bash | ||
# Run from the obow directory | ||
# Fine-tune with 1% of ImageNet annotated images. | ||
$ python main_semisupervised.py --config=ImageNetFull/ResNet50_OBoW_full --workers=32 -p=50 --dst-dir=./experiments/ --data-dir=/datasets_local/ImageNet --multiprocessing-distributed --dist-url='tcp://127.0.0.1:4444' --percentage 1 --lr=0.0002 --lr-head=0.5 --lr-decay=0.2 --wd=0.0 --epochs=40 --schedule 24 32 --name="semi_supervised_prc1_wd0_lr0002lrp5_e40" | ||
# Fine-tune with 10% of ImageNet annotated images. | ||
$ python main_semisupervised.py --config=ImageNetFull/ResNet50_OBoW_full --workers=32 -p=50 --dst-dir=./experiments/ --data-dir=/datasets_local/ImageNet --multiprocessing-distributed --dist-url='tcp://127.0.0.1:4444' --percentage 10 --lr=0.0002 --lr-head=0.5 --lr-decay=0.2 --wd=0.0 --epochs=20 --schedule 12 16 --name="semi_supervised_prc10_wd0_lr0002lrp5_e20" | ||
``` | ||
|
||
|
||
The data of these experiments, such as checkpoints and logs, will be | ||
stored at `./experiments/ImageNetFull/ResNet50_OBoW_full/semi_supervised_prc1_wd0_lr0002lrp5_e40` and | ||
`./experiments/ImageNetFull/ResNet50_OBoW_full/semi_supervised_prc10_wd0_lr0002lrp5_e20` | ||
(for the 1% and 10% settings respectively). | ||
|
||
|
||
### **Convert to torchvision format.** | ||
|
||
The ResNet50 model that we trained is stored in a different format than that of the torchvision ResNe50 model. | ||
The following command converts it to the torchvision format. | ||
|
||
```bash | ||
$ python main_obow.py --config=ImageNetFull/ResNet50_OBoW_full --dst-dir=./experiments/ --data-dir=/datasets_local/ImageNet --multiprocessing-distributed --dist-url='tcp://127.0.0.1:4444' --convert-to-torchvision | ||
``` | ||
|
||
### **Pascal VOC07 Classification evaluation.** | ||
|
||
First convert from the torchvision format to (see command above) to the caffe2 format. | ||
```bash | ||
# Run from the obow directory | ||
python utils/convert_pytorch_to_caffe2.py --pth_model ./experiments/ImageNetFull/ResNet50_OBoW_full/tochvision_resnet50_student_K8192_epoch200.pth.tar --output_model ./experiments/ImageNetFull/ResNet50_OBoW_full/caffe2_resnet50_student_K8192_epoch200_bgr.pkl --rgb2bgr True | ||
``` | ||
|
||
For the following steps you need first to download and install [fair_self_supervision_benchmark](https://github.com/facebookresearch/fair_self_supervision_benchmark). | ||
|
||
```bash | ||
# Run from the fair_self_supervision_benchmark directory | ||
$ python setup.py install | ||
$ python -c 'import self_supervision_benchmark' | ||
# Step 1: prepare datatset. | ||
$ mkdir obow_ep200 | ||
$ mkdir obow_ep200/voc | ||
$ mkdir obow_ep200/voc/voc07 | ||
$ python extra_scripts/create_voc_data_files.py --data_source_dir /datasets_local/VOC2007/ --output_dir ./obow_ep200/voc/voc07/ | ||
# Step 2: extract features from voc2007 | ||
$ mkdir obow_ep200/ssl-benchmark-output | ||
$ mkdir obow_ep200/ssl-benchmark-output/extract_features_gap | ||
$ mkdir obow_ep200/ssl-benchmark-output/extract_features_gap/data | ||
# ==> Extract pool5 features from the train split. | ||
$ python tools/extract_features.py \ | ||
--config_file [obow directory path]/utils/configs/benchmark_tasks/image_classification/voc07/resnet50_supervised_extract_gap_features.yaml \ | ||
--data_type train \ | ||
--output_file_prefix trainval \ | ||
--output_dir ./obow_ep200/ssl-benchmark-output/extract_features_gap/data \ | ||
NUM_DEVICES 1 TEST.BATCH_SIZE 64 TRAIN.BATCH_SIZE 64 \ | ||
TEST.PARAMS_FILE [obow directory path]/experiments/obow/ImageNetFull/ResNet50_OBoW_full/caffe2_resnet50_student_K8192_epoch200_bgr.pkl \ | ||
TRAIN.DATA_FILE ./obow_ep200/voc/voc07/train_images.npy \ | ||
TRAIN.LABELS_FILE ./obow_ep200/voc/voc07/train_labels.npy | ||
# ==> Extract pool5 features from the test split. | ||
$ python tools/extract_features.py \ | ||
--config_file [obow directory path]/utils/configs/benchmark_tasks/image_classification/voc07/resnet50_supervised_extract_gap_features.yaml \ | ||
--data_type test \ | ||
--output_file_prefix test \ | ||
--output_dir ./obow_ep200/ssl-benchmark-output/extract_features_gap/data \ | ||
NUM_DEVICES 1 TEST.BATCH_SIZE 64 TRAIN.BATCH_SIZE 64 \ | ||
TEST.PARAMS_FILE [obow directory path]/experiments/obow/ImageNetFull/ResNet50_OBoW_full/caffe2_resnet50_student_K8192_epoch200_bgr.pkl \ | ||
TRAIN.DATA_FILE ./obow_ep200/voc/voc07/test_images.npy TEST.DATA_FILE ./obow_ep200/voc/voc07/test_images.npy \ | ||
TRAIN.LABELS_FILE ./obow_ep200/voc/voc07/test_labels.npy TEST.LABELS_FILE ./obow_ep200/voc/voc07/test_labels.npy | ||
# Step 4: Train and test linear svms. | ||
# ==> Train linear svms. | ||
$ mkdir obow_ep200/ssl-benchmark-output/extract_features_gap/data/voc07_svm | ||
$ mkdir obow_ep200/ssl-benchmark-output/extract_features_gap/data/voc07_svm/svm_pool5bn | ||
$ python tools/svm/train_svm_kfold.py \ | ||
--data_file ./obow_ep200/ssl-benchmark-output/extract_features_gap/data/trainval_pool5_bn_features.npy \ | ||
--targets_data_file ./obow_ep200/ssl-benchmark-output/extract_features_gap/data/trainval_pool5_bn_targets.npy \ | ||
--costs_list "0.05,0.1,0.3,0.5,1.0,3.0,5.0" \ | ||
--output_path ./obow_ep200/ssl-benchmark-output/extract_features_gap/data/voc07_svm/svm_pool5bn/ | ||
# ==> Test the linear svms. | ||
$ python tools/svm/test_svm.py \ | ||
--data_file ./obow_ep200/ssl-benchmark-output/extract_features_gap/data/test_pool5_bn_features.npy \ | ||
--targets_data_file ./obow_ep200/ssl-benchmark-output/extract_features_gap/data/test_pool5_bn_targets.npy \ | ||
--costs_list "0.05,0.1,0.3,0.5,1.0,3.0,5.0" \ | ||
--output_path ./obow_ep200/ssl-benchmark-output/extract_features_gap/data/voc07_svm/svm_pool5bn/ | ||
``` | ||
|
||
## **Other experiments: Training using 20% of ImageNet and ResNet18.** | ||
|
||
A single gpu is enough for the following experiments. | ||
|
||
### **ResNet18-based OBoW vanilla solution.** | ||
|
||
```bash | ||
# Run from the obow directory | ||
# Train the model. | ||
$ python main_obow.py --config=ImageNet20/ResNet18_OBoW_vanilla --workers=16 --dst-dir=./experiments/ --data-dir=/datasets_local/ImageNet | ||
# Few-shot evaluation. | ||
$ python main_obow.py --config=ImageNet20/ResNet18_OBoW_vanilla --workers=16 --episodes 200 --fewshot-q 1 --fewshot-n 50 --fewshot-k 1 5 --evaluate --start-epoch=-1 --dst-dir=./experiments/ --data-dir=/datasets_local/ImageNet | ||
# Linear classification evaluation. Note the following command precaches the extracted features at root/local_storage/spyros/cache/obow. | ||
$ python main_linear_classification.py --config=ImageNet20/ResNet18_OBoW_vanilla --workers=16 -b 256 --wd 0.000002 --dataset ImageNet --name "ImageNet_LinCls_precache_b256_lr10p0wd2e6" --precache --lr 10.0 --epochs 50 --schedule 15 30 45 --subset=260 --dst-dir=./experiments/ --data-dir=/datasets_local/ImageNet --cache-dir=/root/local_storage/spyros/cache/obow | ||
``` | ||
|
||
### **ResNet18-based OBoW full solution.** | ||
|
||
```bash | ||
# Run from the obow directory | ||
# Train the model. | ||
$ python main_obow.py --config=ImageNet20/ResNet18_OBoW_full --workers=16 --dst-dir=./experiments/ --data-dir=/datasets_local/ImageNet | ||
# Few-shot evaluation. | ||
$ python main_obow.py --config=ImageNet20/ResNet18_OBoW_full --workers=16 --episodes 200 --fewshot-q 1 --fewshot-n 50 --fewshot-k 1 5 --evaluate --start-epoch=-1 --dst-dir=./experiments/ --data-dir=/datasets_local/ImageNet | ||
# Linear classification evaluation. Note the following command precaches the extracted features at root/local_storage/spyros/cache/obow. | ||
$ python main_linear_classification.py --config=ImageNet20/ResNet18_OBoW_full --workers=16 -b 256 --wd 0.000002 --dataset ImageNet --name "ImageNet_LinCls_precache_b256_lr10p0wd2e6" --precache --lr 10.0 --epochs 50 --schedule 15 30 45 --subset=260 --dst-dir=./experiments/ --data-dir=/datasets_local/ImageNet --cache-dir=/root/local_storage/spyros/cache/obow | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,49 @@ | ||
# Model parameters. | ||
model: | ||
alpha: 0.99 | ||
alpha_cosine: True | ||
feature_extractor_arch: "resnet18" | ||
feature_extractor_opts: | ||
global_pooling: True | ||
# Use two feature levels for BoW: "block3" (aka conv4 of ResNet) and "block4" | ||
# (aka conv5 of ResNet). | ||
bow_levels: ["block3", "block4"] | ||
bow_extractor_opts: | ||
inv_delta: 10 | ||
num_words: 8192 | ||
bow_predictor_opts: | ||
kappa: 5 | ||
# (Optional) on-line learning of a linear classifier on top of teacher | ||
# features for monitoring purposes. | ||
num_classes: 1000 | ||
|
||
# Optimization parameters. | ||
optim: | ||
optim_type: "sgd" | ||
momentum: 0.9 | ||
weight_decay: 0.0005 | ||
nesterov: False | ||
num_epochs: 80 | ||
lr: 0.05 | ||
lr_schedule_type: "cos" | ||
|
||
# Data parameters: | ||
data: | ||
dataset_name: "ImageNet" | ||
batch_size: 128 | ||
epoch_size: | ||
subset: 260 # use only 260 images per class, i.e., 20% of ImageNet. | ||
cjitter: [0.4, 0.4, 0.4, 0.1] | ||
cjitter_p: 0.8 | ||
gray_p: 0.2 | ||
gaussian_blur: [0.1, 2.0] | ||
gaussian_blur_p: 0.5 | ||
num_img_crops: 2 # 2 crops of size 160x160. | ||
image_crop_size: 160 | ||
image_crop_range: [0.08, 0.6] | ||
num_img_patches: 5 # 5 patches of size 96x96. | ||
img_patch_preresize: 256 | ||
img_patch_preresize_range: [0.6, 1.0] | ||
img_patch_size: 96 | ||
img_patch_jitter: 24 | ||
only_patches: False |
Oops, something went wrong.