Skip to content

Commit

Permalink
Docs: Add another version of the 'Multiline Tooltip' exmaple which us…
Browse files Browse the repository at this point in the history
…es the standard tooltip (#3340)

* Docs: Add another version of the 'Multiline Tooltip' exmaple which uses the standard tooltip

* Harmonize code style
  • Loading branch information
binste authored Mar 1, 2024
1 parent a724353 commit 818960b
Show file tree
Hide file tree
Showing 4 changed files with 143 additions and 37 deletions.
38 changes: 19 additions & 19 deletions tests/examples_arguments_syntax/multiline_tooltip.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,12 +3,9 @@
==================
This example shows how you can use selections and layers to create a
tooltip-like behavior tied to the x position of the cursor.
If you are looking for more standard tooltips, it is recommended to use the
tooltip encoding channel as shown in the
`Scatter Plot With Tooltips <https://altair-viz.github.io/gallery/scatter_tooltips.html>`_
example.
If you are looking for more standard tooltips, see the :ref:`gallery_multiline_tooltip_standard` example.
The following example employs a little trick to isolate the x-position of the
In this example, we'll employ a little trick to isolate the x-position of the
cursor: we add some transparent points with only an x encoding (no y encoding)
and tie a *nearest* selection to these, tied to the "x" field.
"""
Expand All @@ -18,25 +15,28 @@
import numpy as np

np.random.seed(42)
source = pd.DataFrame(np.cumsum(np.random.randn(100, 3), 0).round(2),
columns=['A', 'B', 'C'], index=pd.RangeIndex(100, name='x'))
source = source.reset_index().melt('x', var_name='category', value_name='y')
columns = ["A", "B", "C"]
source = pd.DataFrame(
np.cumsum(np.random.randn(100, 3), 0).round(2),
columns=columns, index=pd.RangeIndex(100, name="x")
)
source = source.reset_index().melt("x", var_name="category", value_name="y")

# Create a selection that chooses the nearest point & selects based on x-value
nearest = alt.selection_point(nearest=True, on='mouseover',
fields=['x'], empty=False)
nearest = alt.selection_point(nearest=True, on="mouseover",
fields=["x"], empty=False)

# The basic line
line = alt.Chart(source).mark_line(interpolate='basis').encode(
x='x:Q',
y='y:Q',
color='category:N'
line = alt.Chart(source).mark_line(interpolate="basis").encode(
x="x:Q",
y="y:Q",
color="category:N"
)

# Transparent selectors across the chart. This is what tells us
# the x-value of the cursor
selectors = alt.Chart(source).mark_point().encode(
x='x:Q',
x="x:Q",
opacity=alt.value(0),
).add_params(
nearest
Expand All @@ -48,13 +48,13 @@
)

# Draw text labels near the points, and highlight based on selection
text = line.mark_text(align='left', dx=5, dy=-5).encode(
text=alt.condition(nearest, 'y:Q', alt.value(' '))
text = line.mark_text(align="left", dx=5, dy=-5).encode(
text=alt.condition(nearest, "y:Q", alt.value(" "))
)

# Draw a rule at the location of the selection
rules = alt.Chart(source).mark_rule(color='gray').encode(
x='x:Q',
rules = alt.Chart(source).mark_rule(color="gray").encode(
x="x:Q",
).transform_filter(
nearest
)
Expand Down
54 changes: 54 additions & 0 deletions tests/examples_arguments_syntax/multiline_tooltip_standard.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
"""
Multi-Line Tooltip (Standard)
=============================
This example shows how to add a standard tooltip to the same chart
as in :ref:`gallery_multiline_tooltip`. You can find another example
using this approach in the documentation on the :ref:`user-guide-pivot-transform` transformation.
"""
# category: interactive charts
import altair as alt
import pandas as pd
import numpy as np

np.random.seed(42)
columns = ["A", "B", "C"]
source = pd.DataFrame(
np.cumsum(np.random.randn(100, 3), 0).round(2),
columns=columns, index=pd.RangeIndex(100, name="x"),
)
source = source.reset_index().melt("x", var_name="category", value_name="y")

# Create a selection that chooses the nearest point & selects based on x-value
nearest = alt.selection_point(nearest=True, on="mouseover",
fields=["x"], empty=False)

# The basic line
line = alt.Chart(source).mark_line(interpolate="basis").encode(
x="x:Q",
y="y:Q",
color="category:N"
)

# Draw points on the line, and highlight based on selection
points = line.mark_point().encode(
opacity=alt.condition(nearest, alt.value(1), alt.value(0))
)

# Draw a rule at the location of the selection
rules = alt.Chart(source).transform_pivot(
"category",
value="y",
groupby=["x"]
).mark_rule(color="gray").encode(
x="x:Q",
opacity=alt.condition(nearest, alt.value(0.3), alt.value(0)),
tooltip=[alt.Tooltip(c, type="quantitative") for c in columns],
).add_params(nearest)


# Put the five layers into a chart and bind the data
alt.layer(
line, points, rules
).properties(
width=600, height=300
)
34 changes: 16 additions & 18 deletions tests/examples_methods_syntax/multiline_tooltip.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,12 +3,9 @@
==================
This example shows how you can use selections and layers to create a
tooltip-like behavior tied to the x position of the cursor.
If you are looking for more standard tooltips, it is recommended to use the
tooltip encoding channel as shown in the
`Scatter Plot With Tooltips <https://altair-viz.github.io/gallery/scatter_tooltips.html>`_
example.
If you are looking for more standard tooltips, see the :ref:`gallery_multiline_tooltip_standard` example.
The following example employs a little trick to isolate the x-position of the
In this example, we'll employ a little trick to isolate the x-position of the
cursor: we add some transparent points with only an x encoding (no y encoding)
and tie a *nearest* selection to these, tied to the "x" field.
"""
Expand All @@ -18,27 +15,28 @@
import numpy as np

np.random.seed(42)
columns = ["A", "B", "C"]
source = pd.DataFrame(
np.cumsum(np.random.randn(100, 3), 0).round(2),
columns=['A', 'B', 'C'], index=pd.RangeIndex(100, name='x')
columns=columns, index=pd.RangeIndex(100, name="x")
)
source = source.reset_index().melt('x', var_name='category', value_name='y')
source = source.reset_index().melt("x", var_name="category", value_name="y")

# Create a selection that chooses the nearest point & selects based on x-value
nearest = alt.selection_point(nearest=True, on='mouseover',
fields=['x'], empty=False)
nearest = alt.selection_point(nearest=True, on="mouseover",
fields=["x"], empty=False)

# The basic line
line = alt.Chart(source).mark_line(interpolate='basis').encode(
x='x:Q',
y='y:Q',
color='category:N'
line = alt.Chart(source).mark_line(interpolate="basis").encode(
x="x:Q",
y="y:Q",
color="category:N"
)

# Transparent selectors across the chart. This is what tells us
# the x-value of the cursor
selectors = alt.Chart(source).mark_point().encode(
x='x:Q',
x="x:Q",
opacity=alt.value(0),
).add_params(
nearest
Expand All @@ -50,13 +48,13 @@
)

# Draw text labels near the points, and highlight based on selection
text = line.mark_text(align='left', dx=5, dy=-5).encode(
text=alt.condition(nearest, 'y:Q', alt.value(' '))
text = line.mark_text(align="left", dx=5, dy=-5).encode(
text=alt.condition(nearest, "y:Q", alt.value(" "))
)

# Draw a rule at the location of the selection
rules = alt.Chart(source).mark_rule(color='gray').encode(
x='x:Q',
rules = alt.Chart(source).mark_rule(color="gray").encode(
x="x:Q",
).transform_filter(
nearest
)
Expand Down
54 changes: 54 additions & 0 deletions tests/examples_methods_syntax/multiline_tooltip_standard.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
"""
Multi-Line Tooltip (Standard)
=============================
This example shows how to add a standard tooltip to the same chart
as in :ref:`gallery_multiline_tooltip`. You can find another example
using this approach in the documentation on the :ref:`user-guide-pivot-transform` transformation.
"""
# category: interactive charts
import altair as alt
import pandas as pd
import numpy as np

np.random.seed(42)
columns = ["A", "B", "C"]
source = pd.DataFrame(
np.cumsum(np.random.randn(100, 3), 0).round(2),
columns=columns, index=pd.RangeIndex(100, name="x"),
)
source = source.reset_index().melt("x", var_name="category", value_name="y")

# Create a selection that chooses the nearest point & selects based on x-value
nearest = alt.selection_point(nearest=True, on="mouseover",
fields=["x"], empty=False)

# The basic line
line = alt.Chart(source).mark_line(interpolate="basis").encode(
x="x:Q",
y="y:Q",
color="category:N"
)

# Draw points on the line, and highlight based on selection
points = line.mark_point().encode(
opacity=alt.condition(nearest, alt.value(1), alt.value(0))
)

# Draw a rule at the location of the selection
rules = alt.Chart(source).transform_pivot(
"category",
value="y",
groupby=["x"]
).mark_rule(color="gray").encode(
x="x:Q",
opacity=alt.condition(nearest, alt.value(0.3), alt.value(0)),
tooltip=[alt.Tooltip(c, type="quantitative") for c in columns],
).add_params(nearest)


# Put the five layers into a chart and bind the data
alt.layer(
line, points, rules
).properties(
width=600, height=300
)

0 comments on commit 818960b

Please sign in to comment.