Elbrus Bootcamp | Phase-2 | Team Project
Create a service for object detection with YOLOv5 and image denoising using a custom AutoEncoder class.
- Pizza ingredient detection using YOLOv5
- Brain tumor detection from photographs using YOLOv5
- Document denoising using an autoencoder
The service is implemented on Streamlit
import torch
import PIL
import requests
import torch.nn as nn
from PIL import Image
from io import BytesIO
from torchvision import transforms
-
To create a Python virtual environment for running the code, enter:
python3 -m venv my-env
. -
Activate the new environment:
- Windows:
my-env\Scripts\activate.bat
- macOS and Linux:
source my-env/bin/activate
- Windows:
-
Install all dependencies from the requirements.txt file:
pip install -r requirements.txt
..
UPD. In the future, galaxy segmentation from telescope photos using the Mask R-CNN model will be added.