forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add paddle.linalg.solve OP (PaddlePaddle#35715)
* Add linalg.solve op, test=develop * Fix a bug caused by accidental deletion * updated description and fix a bug: missing a comma * Add linalg.solve op, test=develop * updated solve op backward logic * updated solve op backward logic again * Add linalg.solve Op, test=develop * Updated and modified to fit CI requirements * Fix a bug * 1)Add more test cases; 2)Fix a wrong usage in reduces operation; 3)Remove redundant code * Remove redundant comments * 1)Removed redundant code; 2)Updated to enhance code robustness * Removed redundant code * Updated API documents
- Loading branch information
Showing
19 changed files
with
1,945 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,39 @@ | ||
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/fluid/operators/math/matrix_solve.h" | ||
#include "Eigen/Core" | ||
#include "Eigen/LU" | ||
#include "paddle/fluid/operators/math/blas.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
namespace math { | ||
|
||
template <typename T> | ||
class MatrixSolveFunctor<platform::CPUDeviceContext, T> { | ||
public: | ||
void operator()(const platform::CPUDeviceContext& dev_ctx, | ||
const framework::Tensor& a, const framework::Tensor& b, | ||
framework::Tensor* out) { | ||
compute_solve_eigen<platform::CPUDeviceContext, T>(dev_ctx, a, b, out); | ||
} | ||
}; | ||
|
||
template class MatrixSolveFunctor<platform::CPUDeviceContext, float>; | ||
template class MatrixSolveFunctor<platform::CPUDeviceContext, double>; | ||
|
||
} // namespace math | ||
} // namespace operators | ||
} // namespace paddle |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,168 @@ | ||
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/fluid/operators/math/matrix_solve.h" | ||
#include "paddle/fluid/framework/tensor_util.h" | ||
#include "paddle/fluid/operators/math/blas.h" | ||
#include "paddle/fluid/operators/math/math_function.h" | ||
#include "paddle/fluid/operators/solve_op.h" | ||
#include "paddle/fluid/platform/device_context.h" | ||
|
||
namespace paddle { | ||
namespace platform { | ||
class CUDADeviceContext; | ||
} // namespace platform | ||
} // namespace paddle | ||
|
||
namespace paddle { | ||
namespace operators { | ||
namespace math { | ||
|
||
template <typename DeviceContext, typename T> | ||
class MatrixSolveFunctor; | ||
|
||
template <typename T> | ||
class MatrixSolveFunctor<platform::CUDADeviceContext, T> { | ||
public: | ||
void operator()(const platform::CUDADeviceContext& context, | ||
const framework::Tensor& a, const framework::Tensor& b, | ||
framework::Tensor* out) { | ||
#ifndef PADDLE_WITH_HIP | ||
|
||
// solve the equation: Ax = B, | ||
// use cuBlas cublas<S/D>getrfBatched funcion to performs the LU | ||
// factorization of each matrix A, | ||
// and then use cuBlas cublas<S/D>getriBatched function to solve the | ||
// equation after LU factorization. | ||
// ref: | ||
// https://docs.nvidia.com/cuda/cublas/index.html#cublas-lt-t-gt-getrfbatched | ||
const auto& a_dims = a.dims(); | ||
const int a_rank = a_dims.size(); | ||
int n = a_dims[a_rank - 1]; | ||
int lda = n; | ||
int batch_size = a_rank > 2 ? a.numel() / (n * n) : 1; | ||
|
||
const auto& b_dims = b.dims(); | ||
const int b_rank = b_dims.size(); | ||
int nrhs = b_dims[b_rank - 1]; | ||
int ldb = b_dims[b_rank - 2]; | ||
|
||
// make sure the out dims is right | ||
out->Resize(b_dims); | ||
out->mutable_data<T>(context.GetPlace()); | ||
|
||
// copy input A to a temporary tensor tmp_a, | ||
// LU factorization, written back to original matrix A, so in the beginning, | ||
// it's necessary to create a temporary tensor tmp_a. | ||
Tensor tmp_a(a.type()); | ||
tmp_a.Resize(a.dims()); | ||
tmp_a.mutable_data<T>(context.GetPlace()); | ||
TensorCopy(a, context.GetPlace(), &tmp_a); | ||
|
||
// copy input B to a temporary tensor tmp_b, and transpose tmp_b, | ||
// because cuBlas assumes column-major while Paddle uses row-majar. | ||
Tensor tmp_b(b.type()); | ||
const auto& new_dims_vec = getNewDimsVec(b_dims); | ||
tmp_b.Resize(framework::make_ddim(new_dims_vec)); | ||
tmp_b.mutable_data<T>(context.GetPlace()); | ||
math::TransposeNormal<platform::CUDADeviceContext, T> trans; | ||
std::vector<int> new_axis = getNewAxis(b_rank); | ||
trans(context, b, &tmp_b, new_axis); | ||
|
||
const T* a_data_in_gpu = tmp_a.data<T>(); | ||
const T* b_data_in_gpu = tmp_b.data<T>(); | ||
|
||
std::vector<const T*> cpu_ptrs(batch_size * 2); | ||
for (int i = 0; i < batch_size; ++i) { | ||
cpu_ptrs[i] = a_data_in_gpu + i * n * n; | ||
cpu_ptrs[i + batch_size] = b_data_in_gpu + i * n * nrhs; | ||
} | ||
|
||
// Copy the addresses of A and tmp_b from host to device. | ||
memory::allocation::AllocationPtr tmp_gpu_ptrs_data = | ||
memory::Alloc(context, cpu_ptrs.size() * sizeof(T*)); | ||
memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, context.GetPlace()), | ||
tmp_gpu_ptrs_data->ptr(), platform::CPUPlace(), | ||
static_cast<void*>(cpu_ptrs.data()), | ||
cpu_ptrs.size() * sizeof(T*), context.stream()); | ||
|
||
T** gpu_tmp_b_ptrs = | ||
reinterpret_cast<T**>(tmp_gpu_ptrs_data->ptr()) + batch_size; | ||
|
||
// Allocate device memory for BatchedGETRF's info and pivots. | ||
int num_ints = n < 32 ? batch_size : batch_size * (n + 1); | ||
memory::allocation::AllocationPtr tmp_gpu_info_data = | ||
memory::Alloc(context, num_ints * sizeof(int)); | ||
int* gpu_info_ptr = reinterpret_cast<int*>(tmp_gpu_info_data->ptr()); | ||
|
||
auto blas = math::GetBlas<platform::CUDADeviceContext, T>(context); | ||
|
||
// only for singular checking | ||
std::vector<int> info; | ||
info.resize(batch_size); | ||
|
||
int* gpu_pivot_ptr = | ||
reinterpret_cast<int*>(tmp_gpu_info_data->ptr()) + batch_size; | ||
|
||
// This function performs the LU factorization of each matrix A by the | ||
// equation A = L * U. L and U are written back to original matrix A, | ||
// and diagonal elements of L are discarded. | ||
blas.BatchedGETRF(n, reinterpret_cast<T**>(tmp_gpu_ptrs_data->ptr()), | ||
gpu_pivot_ptr, gpu_info_ptr, batch_size); | ||
|
||
// check whether BatchedGETRF is executed successfully or not | ||
memory::Copy(platform::CPUPlace(), info.data(), | ||
BOOST_GET_CONST(platform::CUDAPlace, context.GetPlace()), | ||
gpu_info_ptr, sizeof(int) * batch_size, context.stream()); | ||
for (int i = 0; i < batch_size; ++i) { | ||
PADDLE_ENFORCE_EQ(info[i], 0, | ||
platform::errors::PreconditionNotMet( | ||
"For batch [%d]: U(%d, %d) is zero, singular U. " | ||
"Please check the matrix value and change it to a " | ||
"non-singular matrix", | ||
i, info[i], info[i])); | ||
} | ||
|
||
// hold the result code from BatchedGETRS | ||
int host_info = 0; | ||
|
||
// to solve the equation after LU factorization | ||
CBLAS_TRANSPOSE transA = CblasTrans; | ||
blas.BatchedGETRS( | ||
transA, n, nrhs, reinterpret_cast<const T**>(tmp_gpu_ptrs_data->ptr()), | ||
lda, gpu_pivot_ptr, gpu_tmp_b_ptrs, ldb, &host_info, batch_size); | ||
|
||
// check whether BatchedGETRS is executed successfully or not | ||
PADDLE_ENFORCE_EQ(host_info, 0, | ||
platform::errors::InvalidArgument( | ||
"The [%d]'th argument to cublas*getrsBatched had " | ||
"an illegal value.", | ||
-host_info)); | ||
|
||
// transpose tmp_b to get the final result in row-major form. | ||
math::TransposeNormal<platform::CUDADeviceContext, T> trans2; | ||
trans2(context, tmp_b, out, new_axis); | ||
|
||
#else | ||
compute_solve_eigen<platform::CUDADeviceContext, T>(context, a, b, out); | ||
#endif | ||
} | ||
}; | ||
|
||
template class MatrixSolveFunctor<platform::CUDADeviceContext, float>; | ||
template class MatrixSolveFunctor<platform::CUDADeviceContext, double>; | ||
|
||
} // namespace math | ||
} // namespace operators | ||
} // namespace paddle |
Oops, something went wrong.