Skip to content

vibhatha/PytorchExamples

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

104 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PytorchExamples

Set Up Romeo (RHEL7) For Pytorch Parallel Compatibility

module load anaconda
module load cuda/10.0
module load cudnn/10.0-v7.4.1
module load gcc/6.4.0
export CUDNN_INCLUDE_DIR=/opt/cudnn-10.0-linux-x64-v7.4.1/cuda/include
export CUDNN_LIB_DIR=/opt/cudnn-10.0-linux-x64-v7.4.1/cuda/lib64
conda create -n py36 python=3.6
source activate py36
export CMAKE_PREFIX_PATH="$(dirname $(which conda))/../"
export CMAKE_PREFIX_PATH="/opt/gcc-6.4.0;$CMAKE_PREFIX_PATH"
conda install -c anaconda libgcc-ng libstdcxx-ng
conda install -c conda-forge openmpi
conda install numpy ninja pyyaml mkl setuptools cmake cffi
conda install -c pytorch magma-cuda100
conda install -c mingfeima mkldnn
conda uninstall --force mkl
pip install mkl
pip install mkl_include
conda uninstall --force cmake
pip install cmake
chmod +x ~/.conda/envs/py36/lib/python3.6/site-packages/cmake/data/bin/*
git clone --recursive https://github.com/pytorch/pytorch
cd pytorch/
BUILD_TEST=0 python setup.py install

Credits

Allan Streib of Future Systems, Indiana University Bloomington designed the set up.

Setting Up RHEL7 (Romeo r-003)

module load anaconda
module load cuda/10.0
module load cudnn/10.0-v7.4.1
module load gcc/6.4.0
export CUDNN_INCLUDE_DIR=/opt/cudnn-10.0-linux-x64-v7.4.1/cuda/include
export CUDNN_LIB_DIR=/opt/cudnn-10.0-linux-x64-v7.4.1/cuda/lib64

Note

Private Note: This is for running in r-003 RHEL7
source activate ENV1

Running Examples

RHEL7 Compatible

mpirun -n <parallelism> python3 mnist/mnist_dist_rhel7.py

PyTorch with Horovod & MPI

Install

conda create -n ENVTORCHHVD python=3.7
conda activate ENVTORCHHVD
pip install torchvision
HOROVOD_WITH_MPI=1 HOROVOD_WITH_PYTORCH=1 pip install horovod[pytorch]

Example Code

import argparse
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import torch.utils.data.distributed
import horovod.torch as hvd

# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                    help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
                    help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
                    help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
                    help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
                    help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
                    help='disables CUDA training')
parser.add_argument('--seed', type=int, default=42, metavar='S',
                    help='random seed (default: 42)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                    help='how many batches to wait before logging training status')
parser.add_argument('--fp16-allreduce', action='store_true', default=False,
                    help='use fp16 compression during allreduce')
parser.add_argument('--use-adasum', action='store_true', default=False,
                    help='use adasum algorithm to do reduction')


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x)


def train(epoch):
    model.train()
    # Horovod: set epoch to sampler for shuffling.
    train_sampler.set_epoch(epoch)
    for batch_idx, (data, target) in enumerate(train_loader):
        if args.cuda:
            data, target = data.cuda(), target.cuda()
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            # Horovod: use train_sampler to determine the number of examples in
            # this worker's partition.
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_sampler),
                100. * batch_idx / len(train_loader), loss.item()))


def metric_average(val, name):
    tensor = torch.tensor(val)
    avg_tensor = hvd.allreduce(tensor, name=name)
    return avg_tensor.item()


def test():
    model.eval()
    test_loss = 0.
    test_accuracy = 0.
    for data, target in test_loader:
        if args.cuda:
            data, target = data.cuda(), target.cuda()
        output = model(data)
        # sum up batch loss
        test_loss += F.nll_loss(output, target, size_average=False).item()
        # get the index of the max log-probability
        pred = output.data.max(1, keepdim=True)[1]
        test_accuracy += pred.eq(target.data.view_as(pred)).cpu().float().sum()

    # Horovod: use test_sampler to determine the number of examples in
    # this worker's partition.
    test_loss /= len(test_sampler)
    test_accuracy /= len(test_sampler)

    # Horovod: average metric values across workers.
    test_loss = metric_average(test_loss, 'avg_loss')
    test_accuracy = metric_average(test_accuracy, 'avg_accuracy')

    # Horovod: print output only on first rank.
    if hvd.rank() == 0:
        print('\nTest set: Average loss: {:.4f}, Accuracy: {:.2f}%\n'.format(
            test_loss, 100. * test_accuracy))


if __name__ == '__main__':
    args = parser.parse_args()
    args.cuda = not args.no_cuda and torch.cuda.is_available()

    # Horovod: initialize library.
    hvd.init()
    torch.manual_seed(args.seed)

    if args.cuda:
        # Horovod: pin GPU to local rank.
        torch.cuda.set_device(hvd.local_rank())
        torch.cuda.manual_seed(args.seed)


    # Horovod: limit # of CPU threads to be used per worker.
    torch.set_num_threads(1)

    kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
    # When supported, use 'forkserver' to spawn dataloader workers instead of 'fork' to prevent
    # issues with Infiniband implementations that are not fork-safe
    if (kwargs.get('num_workers', 0) > 0 and hasattr(mp, '_supports_context') and
            mp._supports_context and 'forkserver' in mp.get_all_start_methods()):
        kwargs['multiprocessing_context'] = 'forkserver'

    train_dataset = \
        datasets.MNIST('data-%d' % hvd.rank(), train=True, download=True,
                       transform=transforms.Compose([
                           transforms.ToTensor(),
                           transforms.Normalize((0.1307,), (0.3081,))
                       ]))
    # Horovod: use DistributedSampler to partition the training data.
    train_sampler = torch.utils.data.distributed.DistributedSampler(
        train_dataset, num_replicas=hvd.size(), rank=hvd.rank())
    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.batch_size, sampler=train_sampler, **kwargs)

    test_dataset = \
        datasets.MNIST('data-%d' % hvd.rank(), train=False, transform=transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.1307,), (0.3081,))
        ]))
    # Horovod: use DistributedSampler to partition the test data.
    test_sampler = torch.utils.data.distributed.DistributedSampler(
        test_dataset, num_replicas=hvd.size(), rank=hvd.rank())
    test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.test_batch_size,
                                              sampler=test_sampler, **kwargs)

    model = Net()

    # By default, Adasum doesn't need scaling up learning rate.
    lr_scaler = hvd.size() if not args.use_adasum else 1

    if args.cuda:
        # Move model to GPU.
        model.cuda()
        # If using GPU Adasum allreduce, scale learning rate by local_size.
        if args.use_adasum and hvd.nccl_built():
            lr_scaler = hvd.local_size()

    # Horovod: scale learning rate by lr_scaler.
    optimizer = optim.SGD(model.parameters(), lr=args.lr * lr_scaler,
                          momentum=args.momentum)

    # Horovod: broadcast parameters & optimizer state.
    hvd.broadcast_parameters(model.state_dict(), root_rank=0)
    hvd.broadcast_optimizer_state(optimizer, root_rank=0)

    # Horovod: (optional) compression algorithm.
    compression = hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none

    # Horovod: wrap optimizer with DistributedOptimizer.
    optimizer = hvd.DistributedOptimizer(optimizer,
                                         named_parameters=model.named_parameters(),
                                         compression=compression,
                                         op=hvd.Adasum if args.use_adasum else hvd.Average)

    for epoch in range(1, args.epochs + 1):
        train(epoch)
        test()

Run

horovodrun --mpi -np 4 python3 pytorch_mnist.py

OPENMPI Configs for IB

export OMPI_MCA_btl_openib_allow_ib=1
export OMPI_MCA_btl_openib_if_include="mlx4_0:1"

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages