forked from jtleek/dataanalysis
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4,012 changed files
with
156,124 additions
and
0 deletions.
The diff you're trying to view is too large. We only load the first 3000 changed files.
There are no files selected for viewing
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
strong, b { | ||
font-weight: bolder; | ||
} | ||
em { | ||
font-style: italic; | ||
} | ||
|
||
img.center { | ||
display: block; | ||
margin: auto auto; | ||
} | ||
redtext { | ||
color: red; | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,50 @@ | ||
/*Github Ribbon Test*/ | ||
/* Source: https://github.com/dciccale/css3-github-ribbon */ | ||
/* Define classes for example, definition, problem etc. */ | ||
/* Choose meaningful colors for background and text */ | ||
|
||
.example { | ||
background-color: #121621; | ||
top: 1.2em; | ||
right: -3.2em; | ||
-webkit-transform: rotate(45deg); | ||
-moz-transform: rotate(45deg); | ||
transform: rotate(45deg); | ||
-webkit-box-shadow: 0 0 0 1px #1d212e inset,0 0 2px 1px #fff inset,0 0 1em #888; | ||
-moz-box-shadow: 0 0 0 1px #1d212e inset,0 0 2px 1px #fff inset,0 0 1em #888; | ||
box-shadow: 0 0 0 1px #1d212e inset,0 0 2px 1px #fff inset,0 0 1em #888; | ||
color: #FF0; | ||
display: block; | ||
padding: .6em 3.5em; | ||
position: absolute; | ||
font: bold .82em sans-serif; | ||
text-align: center; | ||
text-decoration: none; | ||
text-shadow: 1px -1px 8px rgba(0,0,0,0.60); | ||
-webkit-user-select: none; | ||
-moz-user-select: none; | ||
user-select: none; | ||
} | ||
|
||
.definition { | ||
background-color: #a00; | ||
top: 1.2em; | ||
right: -3.2em; | ||
-webkit-transform: rotate(45deg); | ||
-moz-transform: rotate(45deg); | ||
transform: rotate(45deg); | ||
-webkit-box-shadow: 0 0 0 1px #1d212e inset,0 0 2px 1px #fff inset,0 0 1em #888; | ||
-moz-box-shadow: 0 0 0 1px #1d212e inset,0 0 2px 1px #fff inset,0 0 1em #888; | ||
box-shadow: 0 0 0 1px #1d212e inset,0 0 2px 1px #fff inset,0 0 1em #888; | ||
color: #FFF; | ||
display: block; | ||
padding: .6em 3.5em; | ||
position: absolute; | ||
font: bold .82em sans-serif; | ||
text-align: center; | ||
text-decoration: none; | ||
text-shadow: 1px -1px 8px rgba(0,0,0,0.60); | ||
-webkit-user-select: none; | ||
-moz-user-select: none; | ||
user-select: none; | ||
} |
Empty file.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Empty file.
Empty file.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,25 @@ | ||
|
||
## This file must be run in the | ||
## UCI HAR Dataset/ directory | ||
|
||
xvals <- read.table("train/X_train.txt") | ||
yvals <- read.table("train/Y_train.txt") | ||
features <- read.table('features.txt') | ||
subject <- read.table("train/subject_train.txt") | ||
|
||
|
||
colnames(xvals) <- features[,2] | ||
yvals <- yvals[,1] | ||
yvals[yvals==1]="walk" | ||
yvals[yvals==2]="walkup" | ||
yvals[yvals==3]="walkdown" | ||
yvals[yvals==4]="sitting" | ||
yvals[yvals==5]="standing" | ||
yvals[yvals==6]="laying" | ||
|
||
xvals$subject <- subject[,1] | ||
xvals$activity <- yvals | ||
|
||
samsungData <- xvals | ||
|
||
save(samsungData,file="samsungData.rda") |
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,205 @@ | ||
--- | ||
title : Clustering example | ||
subtitle : | ||
author : Jeffrey Leek, Assistant Professor of Biostatistics | ||
job : Johns Hopkins Bloomberg School of Public Health | ||
framework : io2012 # {io2012, html5slides, shower, dzslides, ...} | ||
highlighter : highlight.js # {highlight.js, prettify, highlight} | ||
hitheme : tomorrow # | ||
widgets : [mathjax] # {mathjax, quiz, bootstrap} | ||
mode : selfcontained # {standalone, draft} | ||
--- | ||
|
||
|
||
```{r setup, cache = F, echo = F, message = F, warning = F, tidy = F} | ||
# make this an external chunk that can be included in any file | ||
options(width = 100) | ||
opts_chunk$set(message = F, error = F, warning = F, comment = NA, fig.align = 'center', dpi = 100, tidy = F, cache = T, cache.path = '.cache/', fig.path = 'fig/') | ||
options(xtable.type = 'html') | ||
knit_hooks$set(inline = function(x) { | ||
if(is.numeric(x)) { | ||
round(x, getOption('digits')) | ||
} else { | ||
paste(as.character(x), collapse = ', ') | ||
} | ||
}) | ||
knit_hooks$set(plot = knitr:::hook_plot_html) | ||
``` | ||
|
||
## Samsung Galaxy S3 | ||
|
||
<img class=center src=assets/img/samsung.png height='80%'/> | ||
|
||
[http://www.samsung.com/global/galaxys3/](http://www.samsung.com/global/galaxys3/) | ||
|
||
|
||
--- | ||
|
||
## Samsung Data | ||
|
||
<img class=center src=assets/img/ucisamsung.png height='60%'/> | ||
|
||
[http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones](http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones) | ||
|
||
|
||
--- | ||
|
||
## Slightly processed data | ||
|
||
```{r loadData,cache=FALSE} | ||
download.file("https://dl.dropbox.com/u/7710864/courseraPublic/samsungData.rda" | ||
,destfile="./data/samsungData.rda",method="curl") | ||
load("./data/samsungData.rda") | ||
names(samsungData)[1:12] | ||
table(samsungData$activity) | ||
``` | ||
|
||
--- | ||
|
||
## Plotting average acceleration for first subject | ||
|
||
```{r processData,dependson="loadData",fig.height=4.5,fig.width=8} | ||
par(mfrow=c(1,2)) | ||
numericActivity <- as.numeric(as.factor(samsungData$activity))[samsungData$subject==1] | ||
plot(samsungData[samsungData$subject==1,1],pch=19,col=numericActivity,ylab=names(samsungData)[1]) | ||
plot(samsungData[samsungData$subject==1,2],pch=19,col=numericActivity,ylab=names(samsungData)[2]) | ||
legend(150,-0.1,legend=unique(samsungData$activity),col=unique(numericActivity),pch=19) | ||
``` | ||
|
||
--- | ||
|
||
## Clustering based just on average acceleration | ||
|
||
|
||
```{r dependson="processData",fig.height=4,fig.width=4,cache=TRUE} | ||
source("http://dl.dropbox.com/u/7710864/courseraPublic/myplclust.R") | ||
distanceMatrix <- dist(samsungData[samsungData$subject==1,1:3]) | ||
hclustering <- hclust(distanceMatrix) | ||
myplclust(hclustering,lab.col=numericActivity) | ||
``` | ||
|
||
|
||
--- | ||
|
||
## Plotting max acceleration for the first subject | ||
|
||
```{r ,dependson="processData",fig.height=4,fig.width=8} | ||
par(mfrow=c(1,2)) | ||
plot(samsungData[samsungData$subject==1,10],pch=19,col=numericActivity,ylab=names(samsungData)[10]) | ||
plot(samsungData[samsungData$subject==1,11],pch=19,col=numericActivity,ylab=names(samsungData)[11]) | ||
``` | ||
|
||
--- | ||
|
||
## Clustering based on maximum acceleration | ||
|
||
```{r dependson="processData",fig.height=4,fig.width=4,cache=TRUE} | ||
source("http://dl.dropbox.com/u/7710864/courseraPublic/myplclust.R") | ||
distanceMatrix <- dist(samsungData[samsungData$subject==1,10:12]) | ||
hclustering <- hclust(distanceMatrix) | ||
myplclust(hclustering,lab.col=numericActivity) | ||
``` | ||
|
||
|
||
|
||
--- | ||
|
||
## Singular value decomposition | ||
|
||
```{r svdChunk,dependson="processData",fig.height=4,fig.width=8,cache=TRUE} | ||
svd1 = svd(scale(samsungData[samsungData$subject==1,-c(562,563)])) | ||
par(mfrow=c(1,2)) | ||
plot(svd1$u[,1],col=numericActivity,pch=19) | ||
plot(svd1$u[,2],col=numericActivity,pch=19) | ||
``` | ||
|
||
--- | ||
|
||
## Find maximum contributor | ||
|
||
```{r dependson="svdChunk",fig.height=4,fig.width=4,cache=TRUE} | ||
plot(svd1$v[,2],pch=19) | ||
``` | ||
|
||
|
||
--- | ||
|
||
## New clustering with maximum contributer | ||
|
||
```{r dependson="svdChunk",fig.height=4.5,fig.width=4.5,cache=TRUE} | ||
maxContrib <- which.max(svd1$v[,2]) | ||
distanceMatrix <- dist(samsungData[samsungData$subject==1,c(10:12,maxContrib)]) | ||
hclustering <- hclust(distanceMatrix) | ||
myplclust(hclustering,lab.col=numericActivity) | ||
``` | ||
|
||
|
||
--- | ||
|
||
## New clustering with maximum contributer | ||
|
||
```{r dependson="svdChunk",fig.height=4.5,fig.width=4.5,cache=TRUE} | ||
names(samsungData)[maxContrib] | ||
``` | ||
|
||
--- | ||
|
||
## K-means clustering (nstart=1, first try) | ||
|
||
```{r kmeans1,dependson="processData",fig.height=4,fig.width=4} | ||
kClust <- kmeans(samsungData[samsungData$subject==1,-c(562,563)],centers=6) | ||
table(kClust$cluster,samsungData$activity[samsungData$subject==1]) | ||
``` | ||
|
||
|
||
|
||
--- | ||
|
||
## K-means clustering (nstart=1, second try) | ||
|
||
```{r dependson="kmeans1",fig.height=4,fig.width=4,cache=TRUE} | ||
kClust <- kmeans(samsungData[samsungData$subject==1,-c(562,563)],centers=6,nstart=1) | ||
table(kClust$cluster,samsungData$activity[samsungData$subject==1]) | ||
``` | ||
|
||
|
||
--- | ||
|
||
## K-means clustering (nstart=100, first try) | ||
|
||
```{r dependson="kmeans1",fig.height=4,fig.width=4,cache=TRUE} | ||
kClust <- kmeans(samsungData[samsungData$subject==1,-c(562,563)],centers=6,nstart=100) | ||
table(kClust$cluster,samsungData$activity[samsungData$subject==1]) | ||
``` | ||
|
||
|
||
|
||
--- | ||
|
||
## K-means clustering (nstart=100, second try) | ||
|
||
```{r kmeans100,dependson="kmeans1",fig.height=4,fig.width=4,cache=TRUE} | ||
kClust <- kmeans(samsungData[samsungData$subject==1,-c(562,563)],centers=6,nstart=100) | ||
table(kClust$cluster,samsungData$activity[samsungData$subject==1]) | ||
``` | ||
|
||
--- | ||
|
||
## Cluster 1 Variable Centers (Laying) | ||
|
||
```{r dependson="kmeans100",fig.height=4,fig.width=8,cache=FALSE} | ||
plot(kClust$center[1,1:10],pch=19,ylab="Cluster Center",xlab="") | ||
``` | ||
|
||
|
||
--- | ||
|
||
## Cluster 2 Variable Centers (Walking) | ||
|
||
```{r dependson="kmeans100",fig.height=4,fig.width=8,cache=FALSE} | ||
plot(kClust$center[6,1:10],pch=19,ylab="Cluster Center",xlab="") | ||
``` | ||
|
||
|
Oops, something went wrong.