-
Notifications
You must be signed in to change notification settings - Fork 70
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add FP8 KV Cache quant example (#113)
* Add example for quantization kv cache to fp8 * Add eval
- Loading branch information
Showing
2 changed files
with
257 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,170 @@ | ||
# `fp8` Weight, Activation, and KV Cache Quantization | ||
|
||
`llmcompressor` now supports quantizing weights, activations, and KV cache to `fp8` for memory savings and inference acceleration with `vllm`. | ||
|
||
> `fp8` computation is supported on NVIDIA GPUs with compute capability > 8.9 (Ada Lovelace, Hopper). | ||
## Installation | ||
|
||
To get started, install llmcompressor from source as this feature is new: | ||
|
||
```bash | ||
pip install git+https://github.com/vllm-project/llm-compressor.git@cb98f34d4ec9dd175e6995d12fb02dec39c6f27a | ||
``` | ||
|
||
## Quickstart | ||
|
||
The example includes an end-to-end script for applying the quantization algorithm: | ||
|
||
```bash | ||
python3 llama3_fp8_kv_example.py | ||
``` | ||
|
||
The resulting model `Meta-Llama-3-8B-Instruct-FP8-KV` is ready to be loaded into vLLM. | ||
|
||
## Code Walkthrough | ||
|
||
Let's walk through the main steps of the quantization process: | ||
|
||
1. Load model | ||
2. Prepare calibration data | ||
3. Apply quantization | ||
4. Evaluate and save the model | ||
|
||
### 1. Load Model | ||
|
||
Load the model using `SparseAutoModelForCausalLM`: | ||
|
||
```python | ||
from llmcompressor.transformers import SparseAutoModelForCausalLM | ||
from transformers import AutoTokenizer | ||
|
||
MODEL_ID = "meta-llama/Meta-Llama-3-8B-Instruct" | ||
model = SparseAutoModelForCausalLM.from_pretrained( | ||
MODEL_ID, | ||
device_map="auto", | ||
torch_dtype="auto", | ||
) | ||
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | ||
``` | ||
|
||
### 2. Prepare Calibration Data | ||
|
||
Prepare the calibration data using the `ultrachat` dataset: | ||
|
||
```python | ||
from datasets import load_dataset | ||
|
||
DATASET_ID = "HuggingFaceH4/ultrachat_200k" | ||
DATASET_SPLIT = "train_sft" | ||
NUM_CALIBRATION_SAMPLES = 512 | ||
MAX_SEQUENCE_LENGTH = 2048 | ||
|
||
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT) | ||
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES)) | ||
|
||
def process_and_tokenize(example): | ||
text = tokenizer.apply_chat_template(example["messages"], tokenize=False) | ||
return tokenizer(text, padding=False, max_length=MAX_SEQUENCE_LENGTH, truncation=True, add_special_tokens=False) | ||
|
||
ds = ds.map(process_and_tokenize, remove_columns=ds.column_names) | ||
``` | ||
|
||
### 3. Apply Quantization | ||
|
||
Configure and apply the FP8 quantization for weights, activations, and KV cache. | ||
Notice the new `kv_cache_scheme` section: | ||
|
||
```python | ||
from llmcompressor.transformers import oneshot | ||
|
||
recipe = """ | ||
quant_stage: | ||
quant_modifiers: | ||
QuantizationModifier: | ||
ignore: ["lm_head"] | ||
config_groups: | ||
group_0: | ||
weights: | ||
num_bits: 8 | ||
type: float | ||
strategy: tensor | ||
dynamic: false | ||
symmetric: true | ||
input_activations: | ||
num_bits: 8 | ||
type: float | ||
strategy: tensor | ||
dynamic: false | ||
symmetric: true | ||
targets: ["Linear"] | ||
kv_cache_scheme: | ||
num_bits: 8 | ||
type: float | ||
strategy: tensor | ||
dynamic: false | ||
symmetric: true | ||
""" | ||
|
||
oneshot( | ||
model=model, | ||
dataset=ds, | ||
recipe=recipe, | ||
max_seq_length=MAX_SEQUENCE_LENGTH, | ||
num_calibration_samples=NUM_CALIBRATION_SAMPLES, | ||
) | ||
``` | ||
|
||
### 4. Evaluate and Save the Model | ||
|
||
Test the quantized model with a sample generation: | ||
|
||
```python | ||
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda") | ||
output = model.generate(input_ids, max_new_tokens=100) | ||
print(tokenizer.decode(output[0])) | ||
``` | ||
|
||
Save the quantized model: | ||
|
||
```python | ||
SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-KV" | ||
model.save_pretrained(SAVE_DIR, save_compressed=True) | ||
tokenizer.save_pretrained(SAVE_DIR) | ||
``` | ||
|
||
For running the model in vLLM, make sure to specify the `kv_cache_dtype="fp8"` argument to enable quantization of the kv cache, and thus usage of your calibrated scales. | ||
|
||
## Evaluating Accuracy | ||
|
||
To evaluate the accuracy of your quantized model: | ||
|
||
1. Install `vllm` and `lm-evaluation-harness`: | ||
|
||
```bash | ||
pip install "vllm>=0.5.5" lm_eval==0.4.3 | ||
``` | ||
|
||
2. Run an evaluation (e.g., on GSM-8K): | ||
|
||
```bash | ||
MODEL=$PWD/Meta-Llama-3-8B-Instruct-FP8-KV | ||
lm_eval \ | ||
--model vllm \ | ||
--model_args pretrained=$MODEL,kv_cache_dtype=fp8,add_bos_token=True \ | ||
--tasks gsm8k --num_fewshot 5 --batch_size auto | ||
``` | ||
|
||
``` | ||
vllm (pretrained=Meta-Llama-3-8B-Instruct-FP8-KV,kv_cache_dtype=fp8,add_bos_token=True), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: auto | ||
|Tasks|Version| Filter |n-shot| Metric | |Value | |Stderr| | ||
|-----|------:|----------------|-----:|-----------|---|-----:|---|-----:| | ||
|gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.7748|± |0.0115| | ||
| | |strict-match | 5|exact_match|↑ |0.7763|± |0.0115| | ||
``` | ||
|
||
Note: Include `add_bos_token=True` as quantized models can be sensitive to the presence of the `bos` token. | ||
|
||
## Questions or Feature Requests? | ||
|
||
Please open an issue on `vllm-project/llm-compressor`. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,87 @@ | ||
from datasets import load_dataset | ||
from transformers import AutoTokenizer | ||
|
||
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot | ||
|
||
# Select model and load it. | ||
MODEL_ID = "meta-llama/Meta-Llama-3-8B-Instruct" | ||
model = SparseAutoModelForCausalLM.from_pretrained( | ||
MODEL_ID, | ||
device_map="auto", | ||
torch_dtype="auto", | ||
) | ||
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | ||
|
||
# Select calibration dataset. | ||
DATASET_ID = "HuggingFaceH4/ultrachat_200k" | ||
DATASET_SPLIT = "train_sft" | ||
|
||
# Select number of samples. 512 samples is a good place to start. | ||
# Increasing the number of samples can improve accuracy. | ||
NUM_CALIBRATION_SAMPLES = 512 | ||
MAX_SEQUENCE_LENGTH = 2048 | ||
|
||
# Load dataset and preprocess. | ||
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT) | ||
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES)) | ||
|
||
def process_and_tokenize(example): | ||
text = tokenizer.apply_chat_template(example["messages"], tokenize=False) | ||
return tokenizer(text, padding=False, max_length=MAX_SEQUENCE_LENGTH, truncation=True, add_special_tokens=False) | ||
|
||
ds = ds.map(process_and_tokenize, remove_columns=ds.column_names) | ||
|
||
# Configure the quantization algorithm and scheme. | ||
# In this case, we: | ||
# * quantize the weights to fp8 with per-tensor scales | ||
# * quantize the activations to fp8 with per-tensor scales | ||
# * quantize the kv cache to fp8 with per-tensor scales | ||
recipe = """ | ||
quant_stage: | ||
quant_modifiers: | ||
QuantizationModifier: | ||
ignore: ["lm_head"] | ||
config_groups: | ||
group_0: | ||
weights: | ||
num_bits: 8 | ||
type: float | ||
strategy: tensor | ||
dynamic: false | ||
symmetric: true | ||
input_activations: | ||
num_bits: 8 | ||
type: float | ||
strategy: tensor | ||
dynamic: false | ||
symmetric: true | ||
targets: ["Linear"] | ||
kv_cache_scheme: | ||
num_bits: 8 | ||
type: float | ||
strategy: tensor | ||
dynamic: false | ||
symmetric: true | ||
""" | ||
|
||
# Apply algorithms. | ||
oneshot( | ||
model=model, | ||
dataset=ds, | ||
recipe=recipe, | ||
max_seq_length=MAX_SEQUENCE_LENGTH, | ||
num_calibration_samples=NUM_CALIBRATION_SAMPLES, | ||
) | ||
|
||
# Confirm generations of the quantized model look sane. | ||
print("\n\n") | ||
print("========== SAMPLE GENERATION ==============") | ||
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda") | ||
output = model.generate(input_ids, max_new_tokens=100) | ||
print(tokenizer.decode(output[0])) | ||
print("==========================================\n\n") | ||
|
||
# Save to disk compressed. | ||
SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-KV" | ||
model.save_pretrained(SAVE_DIR, save_compressed=True) | ||
tokenizer.save_pretrained(SAVE_DIR) |