Skip to content

Commit

Permalink
Add FP8 KV Cache quant example (#113)
Browse files Browse the repository at this point in the history
* Add example for quantization kv cache to fp8

* Add eval
  • Loading branch information
mgoin authored and kylesayrs committed Aug 28, 2024
1 parent b41d6c7 commit 9cdb07c
Show file tree
Hide file tree
Showing 2 changed files with 257 additions and 0 deletions.
170 changes: 170 additions & 0 deletions examples/quantization_kv_cache/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,170 @@
# `fp8` Weight, Activation, and KV Cache Quantization

`llmcompressor` now supports quantizing weights, activations, and KV cache to `fp8` for memory savings and inference acceleration with `vllm`.

> `fp8` computation is supported on NVIDIA GPUs with compute capability > 8.9 (Ada Lovelace, Hopper).
## Installation

To get started, install llmcompressor from source as this feature is new:

```bash
pip install git+https://github.com/vllm-project/llm-compressor.git@cb98f34d4ec9dd175e6995d12fb02dec39c6f27a
```

## Quickstart

The example includes an end-to-end script for applying the quantization algorithm:

```bash
python3 llama3_fp8_kv_example.py
```

The resulting model `Meta-Llama-3-8B-Instruct-FP8-KV` is ready to be loaded into vLLM.

## Code Walkthrough

Let's walk through the main steps of the quantization process:

1. Load model
2. Prepare calibration data
3. Apply quantization
4. Evaluate and save the model

### 1. Load Model

Load the model using `SparseAutoModelForCausalLM`:

```python
from llmcompressor.transformers import SparseAutoModelForCausalLM
from transformers import AutoTokenizer

MODEL_ID = "meta-llama/Meta-Llama-3-8B-Instruct"
model = SparseAutoModelForCausalLM.from_pretrained(
MODEL_ID,
device_map="auto",
torch_dtype="auto",
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
```

### 2. Prepare Calibration Data

Prepare the calibration data using the `ultrachat` dataset:

```python
from datasets import load_dataset

DATASET_ID = "HuggingFaceH4/ultrachat_200k"
DATASET_SPLIT = "train_sft"
NUM_CALIBRATION_SAMPLES = 512
MAX_SEQUENCE_LENGTH = 2048

ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))

def process_and_tokenize(example):
text = tokenizer.apply_chat_template(example["messages"], tokenize=False)
return tokenizer(text, padding=False, max_length=MAX_SEQUENCE_LENGTH, truncation=True, add_special_tokens=False)

ds = ds.map(process_and_tokenize, remove_columns=ds.column_names)
```

### 3. Apply Quantization

Configure and apply the FP8 quantization for weights, activations, and KV cache.
Notice the new `kv_cache_scheme` section:

```python
from llmcompressor.transformers import oneshot

recipe = """
quant_stage:
quant_modifiers:
QuantizationModifier:
ignore: ["lm_head"]
config_groups:
group_0:
weights:
num_bits: 8
type: float
strategy: tensor
dynamic: false
symmetric: true
input_activations:
num_bits: 8
type: float
strategy: tensor
dynamic: false
symmetric: true
targets: ["Linear"]
kv_cache_scheme:
num_bits: 8
type: float
strategy: tensor
dynamic: false
symmetric: true
"""

oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
)
```

### 4. Evaluate and Save the Model

Test the quantized model with a sample generation:

```python
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda")
output = model.generate(input_ids, max_new_tokens=100)
print(tokenizer.decode(output[0]))
```

Save the quantized model:

```python
SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-KV"
model.save_pretrained(SAVE_DIR, save_compressed=True)
tokenizer.save_pretrained(SAVE_DIR)
```

For running the model in vLLM, make sure to specify the `kv_cache_dtype="fp8"` argument to enable quantization of the kv cache, and thus usage of your calibrated scales.

## Evaluating Accuracy

To evaluate the accuracy of your quantized model:

1. Install `vllm` and `lm-evaluation-harness`:

```bash
pip install "vllm>=0.5.5" lm_eval==0.4.3
```

2. Run an evaluation (e.g., on GSM-8K):

```bash
MODEL=$PWD/Meta-Llama-3-8B-Instruct-FP8-KV
lm_eval \
--model vllm \
--model_args pretrained=$MODEL,kv_cache_dtype=fp8,add_bos_token=True \
--tasks gsm8k --num_fewshot 5 --batch_size auto
```

```
vllm (pretrained=Meta-Llama-3-8B-Instruct-FP8-KV,kv_cache_dtype=fp8,add_bos_token=True), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: auto
|Tasks|Version| Filter |n-shot| Metric | |Value | |Stderr|
|-----|------:|----------------|-----:|-----------|---|-----:|---|-----:|
|gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.7748|± |0.0115|
| | |strict-match | 5|exact_match|↑ |0.7763|± |0.0115|
```

Note: Include `add_bos_token=True` as quantized models can be sensitive to the presence of the `bos` token.

## Questions or Feature Requests?

Please open an issue on `vllm-project/llm-compressor`.
87 changes: 87 additions & 0 deletions examples/quantization_kv_cache/llama3_fp8_kv_example.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
from datasets import load_dataset
from transformers import AutoTokenizer

from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot

# Select model and load it.
MODEL_ID = "meta-llama/Meta-Llama-3-8B-Instruct"
model = SparseAutoModelForCausalLM.from_pretrained(
MODEL_ID,
device_map="auto",
torch_dtype="auto",
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)

# Select calibration dataset.
DATASET_ID = "HuggingFaceH4/ultrachat_200k"
DATASET_SPLIT = "train_sft"

# Select number of samples. 512 samples is a good place to start.
# Increasing the number of samples can improve accuracy.
NUM_CALIBRATION_SAMPLES = 512
MAX_SEQUENCE_LENGTH = 2048

# Load dataset and preprocess.
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))

def process_and_tokenize(example):
text = tokenizer.apply_chat_template(example["messages"], tokenize=False)
return tokenizer(text, padding=False, max_length=MAX_SEQUENCE_LENGTH, truncation=True, add_special_tokens=False)

ds = ds.map(process_and_tokenize, remove_columns=ds.column_names)

# Configure the quantization algorithm and scheme.
# In this case, we:
# * quantize the weights to fp8 with per-tensor scales
# * quantize the activations to fp8 with per-tensor scales
# * quantize the kv cache to fp8 with per-tensor scales
recipe = """
quant_stage:
quant_modifiers:
QuantizationModifier:
ignore: ["lm_head"]
config_groups:
group_0:
weights:
num_bits: 8
type: float
strategy: tensor
dynamic: false
symmetric: true
input_activations:
num_bits: 8
type: float
strategy: tensor
dynamic: false
symmetric: true
targets: ["Linear"]
kv_cache_scheme:
num_bits: 8
type: float
strategy: tensor
dynamic: false
symmetric: true
"""

# Apply algorithms.
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
)

# Confirm generations of the quantized model look sane.
print("\n\n")
print("========== SAMPLE GENERATION ==============")
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda")
output = model.generate(input_ids, max_new_tokens=100)
print(tokenizer.decode(output[0]))
print("==========================================\n\n")

# Save to disk compressed.
SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-KV"
model.save_pretrained(SAVE_DIR, save_compressed=True)
tokenizer.save_pretrained(SAVE_DIR)

0 comments on commit 9cdb07c

Please sign in to comment.