Skip to content

Conversation

@mengwei805
Copy link
Collaborator

What this PR does / why we need it?

support speculative decoding in Ascend, including speculating with a draft model、by matching n-grams in the prompt、using MLP speculators and using EAGLE based draft models.

Does this PR introduce any user-facing change?

u can refer to https://docs.vllm.ai/en/latest/features/spec_decode.html#

How was this patch tested?

Four modes of speculative decoding have been tested, consistent with GPU devices

Signed-off-by: mengwei805 <mengwei25@huawei.com>
Signed-off-by: mengwei805 <mengwei25@huawei.com>
Signed-off-by: mengwei805 <mengwei25@huawei.com>
@wangxiyuan
Copy link
Collaborator

platform.check_and_update_config should be updated as well to init spec_worker IMO

logger = init_logger(__name__)


def create_worker(
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The adaptation work here has been completed in #236

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I missed it.

# the use of TP1DraftModelRunner
if draft_tp == 1 and draft_model_config.hf_config.model_type !=\
"deepseek_mtp":
draft_worker_kwargs["model_runner_cls"] = TP1DraftModelRunner
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

So the patch code here does two change mainly:

  1. remove is_cuda_like hard code
  2. change draft_worker to a new TP1DraftModelRunner in vllm-ascend

right?

Copy link
Collaborator Author

@mengwei805 mengwei805 Mar 10, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

  1. remove is_cuda_like when importing the package and here, because the mode of using EAGLE based draft models must use TP1DraftModelRunner;
  2. change draft_worker to a new TP1DraftModelRunner in vllm-ascend;
  3. When the draft_model type is deepseek_mtp, force TP1DraftModelRunner not to be used. Refer to [Model][Speculative Decoding] Expand DeepSeek MTP code to support k > n_predict vllm#13626 and [Model][Speculative Decoding] DeepSeek MTP spec decode vllm#12755. I think this version can be done this way, because fixing this problem may require a lot of work(may need to adapt multi_step_worker, modify npu_worker, etc.), we can do better in the next version.

In summary, I have verified that the current modification can correctly run 4+1 speculative decoding modes: The 4 is speculating with a draft model、by matching n-grams in the prompt、using MLP speculators and using EAGLE based draft models, and The 1 is deepseek_mtp.

@wangxiyuan wangxiyuan merged commit 11f4971 into vllm-project:v0.7.3-dev Mar 10, 2025
11 checks passed
wangxiyuan pushed a commit that referenced this pull request Apr 17, 2025
### What this PR does / why we need it?
Backport: #252
This support speculative decoding in Ascend, including speculating with
a draft model、by matching n-grams in the prompt、using MLP speculators
and using EAGLE based draft models.

Backport: #423
spec decode MultiStepWorker support TP1DraftModelRunner fully, support
run the draft_model_runner with multi-step prepare on the NPU directly
and support draft_model_runner use MLA.

1. before this pr, `MultiStepWorker` would not step into the branch
using NPU prepare, but only into the branch using CPU prepare (`line 52`
of `vllm_ascend/patch/patch_multi_step_worker.py`). Although this has
`no effect` on the `correct operation` of speculative decoding and the
performance of the two branches is basically the same as of the current
version, I support entering this branch in this PR. In general, there
are two main changes in `patch_multi_step_worker.py`: first, the
`is_cuda_like()` check is removed and the `TP1DraftModelRunner`
rewritten in vllm_ascend is used; second, the
`supports_gpu_multi_step()` function is made to return true on NPU
devices when outer Multi_step_worker could work correct.

3. before this pr, `TP1DraftModelRunner` only supports Attention on NPU,
but not MLA. The relevant adaptation is in
`vllm_ascend/worker/draft_model_runner.py`. Although I don’t know why
the `input_positions` of `model_input.attn_metadata` in vllm-ascend
needs to be added in `execute_model`, it is done in `model_runner.py`,
so I also made corresponding changes. Otherwise, when atten_backend is
MLA, it will prompt that input_positions cannot be found.

4. I commented out two lines in `draft_model_runner.py` in `line118` to
support the scenario of K>1.
  ```
  # lora_mapping=model_input.lora_mapping,
  # lora_requests=model_input.lora_requests,
  ```
I added comments. In the future, when vllm-ascend supports lora feature,
the changes here can be restored.

TODO:
- [ ] revert the patch when the related issues are addressed in vllm

### How was this patch tested?
CI passed with new added test.
- e2e test for medusa proposer:
tests/singlecard/spec_decode/e2e/test_medusa_correctness.py
- e2e test for mlp proposer:
tests/singlecard/spec_decode/e2e/test_mlp_correctness.py
- e2e test for n-gram proposer:
tests/singlecard/spec_decode/e2e/test_ngram_correctness.py

Tests for patched files:
- tests/singlecard/spec_decode/test_dynamic_spec_decode.py
- tests/singlecard/spec_decode/test_multi_step_worker.py
- tests/singlecard/spec_decode/test_ngram_worker.py
- tests/singlecard/spec_decode/test_spec_decode_worker.py

---------

Signed-off-by: MengqingCao <cmq0113@163.com>
Co-authored-by: mengwei805 <mengwei25@huawei.com>
ttanzhiqiang pushed a commit to ttanzhiqiang/vllm-ascend that referenced this pull request Apr 27, 2025
### What this PR does / why we need it?
Backport: vllm-project#252
This support speculative decoding in Ascend, including speculating with
a draft model、by matching n-grams in the prompt、using MLP speculators
and using EAGLE based draft models.

Backport: vllm-project#423
spec decode MultiStepWorker support TP1DraftModelRunner fully, support
run the draft_model_runner with multi-step prepare on the NPU directly
and support draft_model_runner use MLA.

1. before this pr, `MultiStepWorker` would not step into the branch
using NPU prepare, but only into the branch using CPU prepare (`line 52`
of `vllm_ascend/patch/patch_multi_step_worker.py`). Although this has
`no effect` on the `correct operation` of speculative decoding and the
performance of the two branches is basically the same as of the current
version, I support entering this branch in this PR. In general, there
are two main changes in `patch_multi_step_worker.py`: first, the
`is_cuda_like()` check is removed and the `TP1DraftModelRunner`
rewritten in vllm_ascend is used; second, the
`supports_gpu_multi_step()` function is made to return true on NPU
devices when outer Multi_step_worker could work correct.

3. before this pr, `TP1DraftModelRunner` only supports Attention on NPU,
but not MLA. The relevant adaptation is in
`vllm_ascend/worker/draft_model_runner.py`. Although I don’t know why
the `input_positions` of `model_input.attn_metadata` in vllm-ascend
needs to be added in `execute_model`, it is done in `model_runner.py`,
so I also made corresponding changes. Otherwise, when atten_backend is
MLA, it will prompt that input_positions cannot be found.

4. I commented out two lines in `draft_model_runner.py` in `line118` to
support the scenario of K>1.
  ```
  # lora_mapping=model_input.lora_mapping,
  # lora_requests=model_input.lora_requests,
  ```
I added comments. In the future, when vllm-ascend supports lora feature,
the changes here can be restored.

TODO:
- [ ] revert the patch when the related issues are addressed in vllm

### How was this patch tested?
CI passed with new added test.
- e2e test for medusa proposer:
tests/singlecard/spec_decode/e2e/test_medusa_correctness.py
- e2e test for mlp proposer:
tests/singlecard/spec_decode/e2e/test_mlp_correctness.py
- e2e test for n-gram proposer:
tests/singlecard/spec_decode/e2e/test_ngram_correctness.py

Tests for patched files:
- tests/singlecard/spec_decode/test_dynamic_spec_decode.py
- tests/singlecard/spec_decode/test_multi_step_worker.py
- tests/singlecard/spec_decode/test_ngram_worker.py
- tests/singlecard/spec_decode/test_spec_decode_worker.py

---------

Signed-off-by: MengqingCao <cmq0113@163.com>
Co-authored-by: mengwei805 <mengwei25@huawei.com>
Angazenn pushed a commit to Angazenn/vllm-ascend that referenced this pull request Oct 21, 2025
### What this PR does / why we need it?
Backport: vllm-project#252
This support speculative decoding in Ascend, including speculating with
a draft model、by matching n-grams in the prompt、using MLP speculators
and using EAGLE based draft models.

Backport: vllm-project#423
spec decode MultiStepWorker support TP1DraftModelRunner fully, support
run the draft_model_runner with multi-step prepare on the NPU directly
and support draft_model_runner use MLA.

1. before this pr, `MultiStepWorker` would not step into the branch
using NPU prepare, but only into the branch using CPU prepare (`line 52`
of `vllm_ascend/patch/patch_multi_step_worker.py`). Although this has
`no effect` on the `correct operation` of speculative decoding and the
performance of the two branches is basically the same as of the current
version, I support entering this branch in this PR. In general, there
are two main changes in `patch_multi_step_worker.py`: first, the
`is_cuda_like()` check is removed and the `TP1DraftModelRunner`
rewritten in vllm_ascend is used; second, the
`supports_gpu_multi_step()` function is made to return true on NPU
devices when outer Multi_step_worker could work correct.

3. before this pr, `TP1DraftModelRunner` only supports Attention on NPU,
but not MLA. The relevant adaptation is in
`vllm_ascend/worker/draft_model_runner.py`. Although I don’t know why
the `input_positions` of `model_input.attn_metadata` in vllm-ascend
needs to be added in `execute_model`, it is done in `model_runner.py`,
so I also made corresponding changes. Otherwise, when atten_backend is
MLA, it will prompt that input_positions cannot be found.

4. I commented out two lines in `draft_model_runner.py` in `line118` to
support the scenario of K>1.
  ```
  # lora_mapping=model_input.lora_mapping,
  # lora_requests=model_input.lora_requests,
  ```
I added comments. In the future, when vllm-ascend supports lora feature,
the changes here can be restored.

TODO:
- [ ] revert the patch when the related issues are addressed in vllm

### How was this patch tested?
CI passed with new added test.
- e2e test for medusa proposer:
tests/singlecard/spec_decode/e2e/test_medusa_correctness.py
- e2e test for mlp proposer:
tests/singlecard/spec_decode/e2e/test_mlp_correctness.py
- e2e test for n-gram proposer:
tests/singlecard/spec_decode/e2e/test_ngram_correctness.py

Tests for patched files:
- tests/singlecard/spec_decode/test_dynamic_spec_decode.py
- tests/singlecard/spec_decode/test_multi_step_worker.py
- tests/singlecard/spec_decode/test_ngram_worker.py
- tests/singlecard/spec_decode/test_spec_decode_worker.py

---------

Signed-off-by: MengqingCao <cmq0113@163.com>
Co-authored-by: mengwei805 <mengwei25@huawei.com>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants