Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 0 additions & 2 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -96,5 +96,3 @@ target_link_libraries(
target_link_options(vllm_ascend_C PRIVATE "-Wl,-rpath,$ORIGIN:$ORIGIN/lib")

install(TARGETS vllm_ascend_C vllm_ascend_kernels DESTINATION ${VLLM_ASCEND_INSTALL_PATH})


144 changes: 144 additions & 0 deletions benchmarks/ops/ben_vocabparallelembedding.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,144 @@
from typing import Tuple

import numpy as np
import pytest
import torch
import torch_npu # noqa: F401
import vllm # noqa: F401

import vllm_ascend.platform # noqa: F401


def benchmark_npu(fn, num_iterations=100, num_warmup_iterations=50):
"""
Benchmark function for NPU operations

Args:
fn: Function to benchmark
num_iterations: Number of timing iterations
num_warmup_iterations: Number of warmup iterations

Returns:
float: Minimum elapsed time in seconds
"""
start = torch.npu.Event(enable_timing=True)
end = torch.npu.Event(enable_timing=True)
times = np.zeros(num_iterations + num_warmup_iterations)

# Run iterations
for i in range(num_warmup_iterations + num_iterations):
with torch.no_grad():
start.record()
fn() # Execute the function
end.record()
torch.npu.synchronize()
times[i] = start.elapsed_time(end)

# Remove warmup iterations and convert to seconds
times = times[num_warmup_iterations:]
elapsed_time = np.amin(times) / 1000
return elapsed_time


def get_masked_input_and_mask_ref(
input_: torch.Tensor, org_vocab_start_index: int,
org_vocab_end_index: int, num_org_vocab_padding: int,
added_vocab_start_index: int,
added_vocab_end_index: int) -> Tuple[torch.Tensor, torch.Tensor]:
"""Reference implementation for verification"""
org_vocab_mask = (input_ >= org_vocab_start_index) & (input_ <
org_vocab_end_index)
added_vocab_mask = (input_ >= added_vocab_start_index) & (
input_ < added_vocab_end_index)
added_offset = added_vocab_start_index - (
org_vocab_end_index - org_vocab_start_index) - num_org_vocab_padding
valid_offset = (org_vocab_start_index *
org_vocab_mask) + (added_offset * added_vocab_mask)
vocab_mask = org_vocab_mask | added_vocab_mask
masked_input = vocab_mask * (input_ - valid_offset)
return masked_input, ~vocab_mask


DTYPES = [torch.int32]
SHAPES = [(3, 4, 5)]
DEVICES = [f"npu:{0}"]
SEEDS = [0]


@pytest.mark.parametrize("shape", SHAPES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("device", DEVICES)
@pytest.mark.parametrize("seed", SEEDS)
@torch.inference_mode()
def test_get_masked_input_and_mask(
shape: Tuple[int, ...],
dtype: torch.dtype,
device: str,
seed: int,
) -> None:
# Set random seed and device
torch.manual_seed(seed)
torch.set_default_device(device)

# Generate random input tensor
input_tensor = torch.randint(0, 1000, shape, dtype=dtype)

# Test parameters
test_case = {
"org_start": 100,
"org_end": 200,
"padding": 0,
"added_start": 300,
"added_end": 400,
}

# Define reference function
def ref_fn():
return get_masked_input_and_mask_ref(input_tensor,
test_case["org_start"],
test_case["org_end"],
test_case["padding"],
test_case["added_start"],
test_case["added_end"])

# Define custom function
def custom_fn():
return torch.ops._C.get_masked_input_and_mask(input_tensor,
test_case["org_start"],
test_case["org_end"],
test_case["padding"],
test_case["added_start"],
test_case["added_end"])

# Get results for correctness testing
ref_masked_input, ref_mask = ref_fn()
custom_masked_input, custom_mask = custom_fn()

# Benchmark both implementations
ref_time = benchmark_npu(ref_fn)
custom_time = benchmark_npu(custom_fn)

# Print performance results
print("\nPerformance Results:")
print(f"Reference implementation: {ref_time*1000:.3f} ms")
print(f"Custom implementation: {custom_time*1000:.3f} ms")
print(f"Speedup: {ref_time/custom_time:.2f}x")

# Compare results for correctness
ref_masked_input = ref_masked_input.to(dtype)
print("\nResults comparison:")
print("custom_masked_input:", custom_masked_input)
print("ref_masked_input:", ref_masked_input)
print("custom_mask:", custom_mask)
print("ref_mask:", ref_mask)
torch.testing.assert_close(
custom_masked_input,
ref_masked_input,
rtol=1e-5,
atol=1e-5,
msg=f"Masked input mismatch for case: {test_case}")
torch.testing.assert_close(custom_mask,
ref_mask,
rtol=1e-5,
atol=1e-5,
msg=f"Mask mismatch for case: {test_case}")
Loading