-
Notifications
You must be signed in to change notification settings - Fork 562
[Model][0.7.3] Add support for Qwen3-MoE model #915
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Collaborator
Author
|
Comparing with diff --git a/vllm_ascend/models/qwen3_moe.py b/vllm_ascend/models/qwen3_moe.py
index aae5401..b95c3d9 100644
--- a/vllm_ascend/models/qwen3_moe.py
+++ b/vllm_ascend/models/qwen3_moe.py
@@ -1,13 +1,9 @@
-# SPDX-License-Identifier: Apache-2.0
-
-# Copyright 2024 The Qwen team.
+#
+# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# Copyright 2023 The vLLM team.
-# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
+# Copyright 2024 The Qwen team.
+# Copyright 2022 EleutherAI and the HuggingFace Inc. team.
#
-# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
-# and OPT implementations in this library. It has been modified from its
-# original forms to accommodate minor architectural differences compared
-# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@@ -20,18 +16,21 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
-"""Inference-only Qwen3MoE model compatible with HuggingFace weights."""
+# Adapted from vllm/model_executor/models/qwen3_moe.py
+# This file is a part of the vllm-ascend project.
+
from collections.abc import Iterable
-from typing import Any, Optional, Union
+from typing import Any, List, Optional, Union
import torch
from torch import nn
from transformers import PretrainedConfig
-
-from vllm.attention import Attention
+from vllm.attention import Attention, AttentionMetadata
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, VllmConfig
-from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
+from vllm.distributed import (get_pp_group,
+ get_tensor_model_parallel_world_size,
+ tensor_model_parallel_all_reduce)
from vllm.logger import init_logger
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.fused_moe import FusedMoE
@@ -43,18 +42,17 @@ from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
+from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
+from vllm.model_executor.models.interfaces import SupportsPP
+from vllm.model_executor.models.utils import (
+ extract_layer_index, is_pp_missing_parameter,
+ make_empty_intermediate_tensors_factory, make_layers, maybe_prefix)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors
-from .interfaces import SupportsPP
-from .utils import (AutoWeightsLoader, extract_layer_index,
- is_pp_missing_parameter,
- make_empty_intermediate_tensors_factory, make_layers,
- maybe_prefix)
-
logger = init_logger(__name__)
@@ -99,7 +97,6 @@ class Qwen3MoeSparseMoeBlock(nn.Module):
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
- prefix: str = "",
):
super().__init__()
self.tp_size = get_tensor_model_parallel_world_size()
@@ -115,14 +112,12 @@ class Qwen3MoeSparseMoeBlock(nn.Module):
intermediate_size=config.moe_intermediate_size,
reduce_results=False,
renormalize=config.norm_topk_prob,
- quant_config=quant_config,
- prefix=f"{prefix}.experts")
+ quant_config=quant_config)
self.gate = ReplicatedLinear(config.hidden_size,
config.num_experts,
bias=False,
- quant_config=None,
- prefix=f"{prefix}.gate")
+ quant_config=None)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# NOTE: hidden_states can have either 1D or 2D shape.
@@ -136,7 +131,7 @@ class Qwen3MoeSparseMoeBlock(nn.Module):
router_logits=router_logits)
final_hidden_states = final_hidden_states
if self.tp_size > 1:
- final_hidden_states = self.experts.maybe_all_reduce_tensor_model_parallel( # noqa E501
+ final_hidden_states = tensor_model_parallel_all_reduce(
final_hidden_states)
return final_hidden_states.view(orig_shape)
@@ -218,6 +213,8 @@ class Qwen3MoeAttention(nn.Module):
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
+ kv_cache: torch.Tensor,
+ attn_metadata: AttentionMetadata,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
@@ -232,7 +229,7 @@ class Qwen3MoeAttention(nn.Module):
k_by_head = self.k_norm(k_by_head)
k = k_by_head.view(k.shape)
q, k = self.rotary_emb(positions, q, k)
- attn_output = self.attn(q, k, v)
+ attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
output, _ = self.o_proj(attn_output)
return output
@@ -275,8 +272,7 @@ class Qwen3MoeDecoderLayer(nn.Module):
config.num_experts > 0 and
(layer_idx + 1) % config.decoder_sparse_step == 0):
self.mlp = Qwen3MoeSparseMoeBlock(config=config,
- quant_config=quant_config,
- prefix=f"{prefix}.mlp")
+ quant_config=quant_config)
else:
self.mlp = Qwen3MoeMLP(hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
@@ -292,6 +288,8 @@ class Qwen3MoeDecoderLayer(nn.Module):
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
+ kv_cache: torch.Tensor,
+ attn_metadata: AttentionMetadata,
residual: Optional[torch.Tensor],
) -> torch.Tensor:
# Self Attention
@@ -304,6 +302,8 @@ class Qwen3MoeDecoderLayer(nn.Module):
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
+ kv_cache=kv_cache,
+ attn_metadata=attn_metadata,
)
# Fully Connected
@@ -325,7 +325,7 @@ class Qwen3MoeModel(nn.Module):
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
- self.config = config
+ # self.config = config
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
@@ -350,6 +350,8 @@ class Qwen3MoeModel(nn.Module):
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
+ kv_caches: List[torch.Tensor],
+ attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
@@ -365,7 +367,9 @@ class Qwen3MoeModel(nn.Module):
residual = intermediate_tensors["residual"]
for i in range(self.start_layer, self.end_layer):
layer = self.layers[i]
- hidden_states, residual = layer(positions, hidden_states, residual)
+ hidden_states, residual = layer(positions, hidden_states,
+ kv_caches[i - self.start_layer],
+ attn_metadata, residual)
if not get_pp_group().is_last_rank:
return IntermediateTensors({
"hidden_states": hidden_states,
@@ -374,6 +378,74 @@ class Qwen3MoeModel(nn.Module):
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
+
+class Qwen3MoeForCausalLM(nn.Module, SupportsPP):
+ packed_modules_mapping = {
+ "qkv_proj": [
+ "q_proj",
+ "k_proj",
+ "v_proj",
+ ],
+ "gate_up_proj": [
+ "gate_proj",
+ "up_proj",
+ ],
+ }
+
+ fall_back_to_pt_during_load = False
+
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
+ super().__init__()
+ config = vllm_config.model_config.hf_config
+ quant_config = vllm_config.quant_config
+ self.config = config
+ self.quant_config = quant_config
+ self.model = Qwen3MoeModel(vllm_config=vllm_config,
+ prefix=maybe_prefix(prefix, "model"))
+ self.lm_head = ParallelLMHead(config.vocab_size,
+ config.hidden_size,
+ quant_config=quant_config)
+ if self.config.tie_word_embeddings:
+ self.lm_head.weight = self.model.embed_tokens.weight
+ self.logits_processor = LogitsProcessor(config.vocab_size)
+ self.sampler = get_sampler()
+ self.make_empty_intermediate_tensors = (
+ self.model.make_empty_intermediate_tensors)
+
+ def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
+ return self.model.get_input_embeddings(input_ids)
+
+ def forward(
+ self,
+ input_ids: torch.Tensor,
+ positions: torch.Tensor,
+ kv_caches: List[torch.Tensor],
+ attn_metadata: AttentionMetadata,
+ intermediate_tensors: Optional[IntermediateTensors] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ ) -> Union[torch.Tensor, IntermediateTensors]:
+ hidden_states = self.model(input_ids, positions, kv_caches,
+ attn_metadata, intermediate_tensors,
+ inputs_embeds)
+ return hidden_states
+
+ def compute_logits(
+ self,
+ hidden_states: torch.Tensor,
+ sampling_metadata: SamplingMetadata,
+ ) -> Optional[torch.Tensor]:
+ logits = self.logits_processor(self.lm_head, hidden_states,
+ sampling_metadata)
+ return logits
+
+ def sample(
+ self,
+ logits: Optional[torch.Tensor],
+ sampling_metadata: SamplingMetadata,
+ ) -> Optional[SamplerOutput]:
+ next_tokens = self.sampler(logits, sampling_metadata)
+ return next_tokens
+
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
@@ -471,67 +543,3 @@ class Qwen3MoeModel(nn.Module):
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
-
-
-class Qwen3MoeForCausalLM(nn.Module, SupportsPP):
- packed_modules_mapping = {
- "qkv_proj": [
- "q_proj",
- "k_proj",
- "v_proj",
- ],
- "gate_up_proj": [
- "gate_proj",
- "up_proj",
- ],
- }
-
- fall_back_to_pt_during_load = False
-
- def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
- super().__init__()
- config = vllm_config.model_config.hf_config
- quant_config = vllm_config.quant_config
- self.config = config
- self.quant_config = quant_config
- self.model = Qwen3MoeModel(vllm_config=vllm_config,
- prefix=maybe_prefix(prefix, "model"))
- self.lm_head = ParallelLMHead(config.vocab_size,
- config.hidden_size,
- quant_config=quant_config)
- if self.config.tie_word_embeddings:
- self.lm_head.weight = self.model.embed_tokens.weight
- self.logits_processor = LogitsProcessor(config.vocab_size)
- self.make_empty_intermediate_tensors = (
- self.model.make_empty_intermediate_tensors)
-
- def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
- return self.model.get_input_embeddings(input_ids)
-
- def forward(
- self,
- input_ids: torch.Tensor,
- positions: torch.Tensor,
- intermediate_tensors: Optional[IntermediateTensors] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- ) -> Union[torch.Tensor, IntermediateTensors]:
- hidden_states = self.model(input_ids, positions, intermediate_tensors,
- inputs_embeds)
- return hidden_states
-
- def compute_logits(
- self,
- hidden_states: torch.Tensor,
- sampling_metadata: SamplingMetadata,
- ) -> Optional[torch.Tensor]:
- logits = self.logits_processor(self.lm_head, hidden_states,
- sampling_metadata)
- return logits
-
- def load_weights(self, weights: Iterable[tuple[str,
- torch.Tensor]]) -> set[str]:
- loader = AutoWeightsLoader(
- self,
- skip_prefixes=(["rotary_emb.inv_freq"]),
- )
- return loader.load_weights(weights) |
wangxiyuan
approved these changes
May 22, 2025
Collaborator
wangxiyuan
left a comment
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Nice work.
Collaborator
|
Please doubel check that deepseek works as expect as well. |
11 tasks
Contributor
The accuracy of Qwen/Qwen3-30B-A3B with gsm8k datasets is low:
|
Signed-off-by: shen-shanshan <467638484@qq.com>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
What this PR does / why we need it?
Add support for Qwen3-MoE model.
Does this PR introduce any user-facing change?
no.
How was this patch tested?
TODO: