Skip to content

Commit

Permalink
remove test_skip_speculation from dist tests
Browse files Browse the repository at this point in the history
  • Loading branch information
wooyeonlee0 committed Jun 25, 2024
1 parent ae0d7f1 commit b84a070
Show file tree
Hide file tree
Showing 2 changed files with 1 addition and 132 deletions.
66 changes: 0 additions & 66 deletions tests/spec_decode/e2e/test_integration_dist_tp2.py
Original file line number Diff line number Diff line change
Expand Up @@ -109,69 +109,3 @@ def test_draft_model_tp_lt_target_model_tp2(test_llm_generator,
batch_size,
max_output_len=32,
force_output_len=True)


@pytest.mark.skipif(torch.cuda.device_count() < 2,
reason="Need at least 2 GPUs to run the test.")
@pytest.mark.parametrize(
"common_llm_kwargs",
[{
"model": "JackFram/llama-160m",
# Skip cuda graph recording for fast test.
"enforce_eager": True,
# Required for spec decode.
"use_v2_block_manager": True,
"tensor_parallel_size": 2,
# Use AsyncLLM engine, so that the engine runs in its own process.
# Otherwise, since vLLM does not follow true SPMD, the test runner
# process will have both the engine and the rank0 worker. NCCL is not
# cleaned up properly, and its server host thread leaks, causing the
# second run of the test to fail with internal NCCL error.
"use_async": True,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
# Artificially limit the draft model max model len; this forces vLLM
# to skip speculation once the sequences grow beyond 32-k tokens.
"speculative_max_model_len": 32,
},
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
# Artificially limit the draft model max model len; this forces vLLM
# to skip speculation once the sequences grow beyond 32-k tokens.
"speculative_max_model_len": 32,
"speculative_draft_tensor_parallel_size": 1,
},
])
@pytest.mark.parametrize("batch_size", [8])
@pytest.mark.parametrize(
"output_len",
[
# This must be a good bit larger than speculative_max_model_len so that
# we can test the case where all seqs are skipped, but still small to
# ensure fast test.
64,
])
@pytest.mark.parametrize("seed", [1])
def test_skip_speculation(baseline_llm_generator, test_llm_generator,
batch_size: int, output_len: int):
"""Verify greedy equality when some (or all) sequences skip speculation.
We do this by setting the max model len of the draft model to an
artificially low value, such that when the sequences grow beyond it, they
are skipped in speculative decoding.
"""
run_greedy_equality_correctness_test(baseline_llm_generator,
test_llm_generator,
batch_size,
max_output_len=output_len,
force_output_len=True)
67 changes: 1 addition & 66 deletions tests/spec_decode/e2e/test_integration_dist_tp4.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,7 @@
])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
#TODO(wooyeon): add spec_draft_dp=2 case
{
"speculative_draft_tensor_parallel_size": 1,
},
Expand All @@ -55,69 +56,3 @@ def test_draft_model_tp_lt_target_model_tp4(test_llm_generator,
batch_size,
max_output_len=32,
force_output_len=True)


@pytest.mark.skipif(torch.cuda.device_count() < 4,
reason="Need at least 4 GPUs to run the test.")
@pytest.mark.parametrize(
"common_llm_kwargs",
[{
"model": "JackFram/llama-160m",
# Skip cuda graph recording for fast test.
"enforce_eager": True,
# Required for spec decode.
"use_v2_block_manager": True,
"tensor_parallel_size": 4,
# Use AsyncLLM engine, so that the engine runs in its own process.
# Otherwise, since vLLM does not follow true SPMD, the test runner
# process will have both the engine and the rank0 worker. NCCL is not
# cleaned up properly, and its server host thread leaks, causing the
# second run of the test to fail with internal NCCL error.
"use_async": True,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
# Artificially limit the draft model max model len; this forces vLLM
# to skip speculation once the sequences grow beyond 32-k tokens.
"speculative_max_model_len": 32,
},
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
# Artificially limit the draft model max model len; this forces vLLM
# to skip speculation once the sequences grow beyond 32-k tokens.
"speculative_max_model_len": 32,
"speculative_draft_tensor_parallel_size": 1,
},
])
@pytest.mark.parametrize("batch_size", [8])
@pytest.mark.parametrize(
"output_len",
[
# This must be a good bit larger than speculative_max_model_len so that
# we can test the case where all seqs are skipped, but still small to
# ensure fast test.
64,
])
@pytest.mark.parametrize("seed", [1])
def test_skip_speculation(baseline_llm_generator, test_llm_generator,
batch_size: int, output_len: int):
"""Verify greedy equality when some (or all) sequences skip speculation.
We do this by setting the max model len of the draft model to an
artificially low value, such that when the sequences grow beyond it, they
are skipped in speculative decoding.
"""
run_greedy_equality_correctness_test(baseline_llm_generator,
test_llm_generator,
batch_size,
max_output_len=output_len,
force_output_len=True)

0 comments on commit b84a070

Please sign in to comment.