-
-
Couldn't load subscription status.
- Fork 10.8k
Description
Your current environment
Collecting environment information...
PyTorch version: 2.5.1+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Springdale Linux release 8.8 (Modena) (x86_64)
GCC version: (GCC) 8.5.0 20210514 (Red Hat 8.5.0-18)
Clang version: Could not collect
CMake version: version 3.20.2
Libc version: glibc-2.28
Python version: 3.12.8 | packaged by Anaconda, Inc. | (main, Dec 11 2024, 16:31:09) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-4.18.0-477.13.1.el8_8.x86_64-x86_64-with-glibc2.28
Is CUDA available: True
CUDA runtime version: 12.5.82
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA RTX A6000
GPU 1: NVIDIA RTX A6000
GPU 2: NVIDIA RTX A6000
GPU 3: NVIDIA RTX A6000
GPU 4: NVIDIA RTX A6000
GPU 5: NVIDIA RTX A6000
GPU 6: NVIDIA RTX A6000
GPU 7: NVIDIA RTX A6000
Nvidia driver version: 555.42.06
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 128
On-line CPU(s) list: 0-127
Thread(s) per core: 2
Core(s) per socket: 32
Socket(s): 2
NUMA node(s): 2
Vendor ID: AuthenticAMD
CPU family: 23
Model: 49
Model name: AMD EPYC 7502 32-Core Processor
Stepping: 0
CPU MHz: 3319.148
CPU max MHz: 2500.0000
CPU min MHz: 1500.0000
BogoMIPS: 4999.77
Virtualization: AMD-V
L1d cache: 32K
L1i cache: 32K
L2 cache: 512K
L3 cache: 16384K
NUMA node0 CPU(s): 0-31,64-95
NUMA node1 CPU(s): 32-63,96-127
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sme sev sev_es
Versions of relevant libraries:
[pip3] numpy==1.26.3
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.2.0
[pip3] torch==2.5.1
[pip3] torch-model-archiver==0.12.0
[pip3] torch-workflow-archiver==0.2.15
[pip3] torchserve==0.12.0
[pip3] torchvision==0.20.1+cu121
[pip3] transformers==4.47.1
[pip3] triton==3.1.0
[conda] numpy 1.26.3 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi
[conda] nvidia-ml-py 12.560.30 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi
[conda] pyzmq 26.2.0 pypi_0 pypi
[conda] torch 2.5.1 pypi_0 pypi
[conda] torch-model-archiver 0.12.0 pypi_0 pypi
[conda] torch-workflow-archiver 0.2.15 pypi_0 pypi
[conda] torchserve 0.12.0 pypi_0 pypi
[conda] torchvision 0.20.1+cu121 pypi_0 pypi
[conda] transformers 4.47.1 pypi_0 pypi
[conda] triton 3.1.0 pypi_0 pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.6.5
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV4 NODE NODE SYS SYS SYS SYS 0-31,64-95 0 N/A
GPU1 NV4 X NODE NODE SYS SYS SYS SYS 0-31,64-95 0 N/A
GPU2 NODE NODE X NV4 SYS SYS SYS SYS 0-31,64-95 0 N/A
GPU3 NODE NODE NV4 X SYS SYS SYS SYS 0-31,64-95 0 N/A
GPU4 SYS SYS SYS SYS X NODE NODE NODE 32-63,96-127 1 N/A
GPU5 SYS SYS SYS SYS NODE X NODE NODE 32-63,96-127 1 N/A
GPU6 SYS SYS SYS SYS NODE NODE X NV4 32-63,96-127 1 N/A
GPU7 SYS SYS SYS SYS NODE NODE NV4 X 32-63,96-127 1 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
LD_LIBRARY_PATH=/zfsauton2/home/hshah2/miniconda/envs/vllm/lib/python3.12/site-packages/cv2/../../lib64:/usr/local/cuda/lib64:
MKL_NUM_THREADS=1
OMP_NUM_THREADS=1
CUDA_MODULE_LOADING=LAZY
How would you like to use vllm
Is the v1/embeddings API supposed to work when the task is set to "generate". Upon "POST"ing request:
{
"model": "neuralmagic/Mistral-7B-Instruct-v0.3-quantized.w8a16",
"input": "Never have I ever",
}
when the vllm server is running with following command:
CUDA_VISIBLE_DEVICES=3 python -m vllm.entrypoints.openai.api_server --model "neuralmagic/Mistral-7B-Instruct-v0.3-quantized.w8a16" --quantization gptq --dtype half --gpu-memory-utilization 0.6 --chat-template mistral_chat_template.jinja
I get the following error:
ne 867, in check_generation_prompt
if data.get("continue_final_message") and data.get(
^^^^^^^^
AttributeError: 'bytes' object has no attribute 'get'
I suppose, I would have to run another vllm engine for embedding task?
Thanks!
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.