-
-
Couldn't load subscription status.
- Fork 10.8k
Closed
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
Llama4
Using image vllm/vllm-openai:v0.8.3 running meta-llama/Llama-4-Scout-17B-16E-Instruct
INFO 04-10 09:12:25 [__init__.py:239] Automatically detected platform cuda.
Collecting environment information...
PyTorch version: 2.6.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 4.0.0
Libc version: glibc-2.35
Python version: 3.12.9 (main, Feb 5 2025, 08:49:00) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-6.6.72+-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA H200
GPU 1: NVIDIA H200
GPU 2: NVIDIA H200
GPU 3: NVIDIA H200
GPU 4: NVIDIA H200
GPU 5: NVIDIA H200
GPU 6: NVIDIA H200
GPU 7: NVIDIA H200
Nvidia driver version: 570.86.15
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 52 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 224
On-line CPU(s) list: 0-223
Vendor ID: GenuineIntel
Model name: INTEL(R) XEON(R) PLATINUM 8581C CPU @ 2.10GHz
CPU family: 6
Model: 207
Thread(s) per core: 2
Core(s) per socket: 56
Socket(s): 2
Stepping: 2
BogoMIPS: 4200.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx_vnni avx512_bf16 wbnoinvd arat avx512vbmi umip avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid cldemote movdiri movdir64b fsrm md_clear serialize tsxldtrk amx_bf16 avx512_fp16 amx_tile amx_int8 arch_capabilities
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 5.3 MiB (112 instances)
L1i cache: 3.5 MiB (112 instances)
L2 cache: 224 MiB (112 instances)
L3 cache: 520 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-55,112-167
NUMA node1 CPU(s): 56-111,168-223
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] flashinfer-python==0.2.1.post2+cu124torch2.6
[pip3] numpy==2.1.3
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.4.0
[pip3] torch==2.6.0
[pip3] torchaudio==2.6.0
[pip3] torchvision==0.21.0
[pip3] transformers==4.51.0
[pip3] triton==3.2.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.8.3
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV18 NV18 NV18 NV18 NV18 NV18 NV18 0-55,112-167 0 N/A
GPU1 NV18 X NV18 NV18 NV18 NV18 NV18 NV18 0-55,112-167 0 N/A
GPU2 NV18 NV18 X NV18 NV18 NV18 NV18 NV18 0-55,112-167 0 N/A
GPU3 NV18 NV18 NV18 X NV18 NV18 NV18 NV18 0-55,112-167 0 N/A
GPU4 NV18 NV18 NV18 NV18 X NV18 NV18 NV18 56-111,168-223 1 N/A
GPU5 NV18 NV18 NV18 NV18 NV18 X NV18 NV18 56-111,168-223 1 N/A
GPU6 NV18 NV18 NV18 NV18 NV18 NV18 X NV18 56-111,168-223 1 N/A
GPU7 NV18 NV18 NV18 NV18 NV18 NV18 NV18 X 56-111,168-223 1 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NVIDIA_VISIBLE_DEVICES=all
NVIDIA_REQUIRE_CUDA=cuda>=12.4 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526 brand=tesla,driver>=535,driver<536 brand=unknown,driver>=535,driver<536 brand=nvidia,driver>=535,driver<536 brand=nvidiartx,driver>=535,driver<536 brand=geforce,driver>=535,driver<536 brand=geforcertx,driver>=535,driver<536 brand=quadro,driver>=535,driver<536 brand=quadrortx,driver>=535,driver<536 brand=titan,driver>=535,driver<536 brand=titanrtx,driver>=535,driver<536
NCCL_VERSION=2.20.5-1
NVIDIA_DRIVER_CAPABILITIES=compute,utility
NVIDIA_PRODUCT_NAME=CUDA
VLLM_USAGE_SOURCE=production-docker-image
CUDA_VERSION=12.4.0
LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
GPU worker fails during inference with torch error IndexError: index out of range in self.
Engine initialization log:
INFO 04-09 12:04:35 [core.py:61] Initializing a V1 LLM engine (v0.8.3) with config: model='meta-llama/Llama-4-Scout-17B-16E-Instruct', speculative_config=None, tokenizer='meta-llama/Llama-4-Scout-17B-16E-Instruct', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.bfloat16, max_seq_len=3600000, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=8, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='xgrammar', reasoning_backend=None), observability_config=ObservabilityConfig(show_hidden_metrics=False, otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=None, served_model_name=meta-llama/Llama-4-Scout-17B-16E-Instruct, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=True, chunked_prefill_enabled=True, use_async_output_proc=True, disable_mm_preprocessor_cache=False, mm_processor_kwargs=None, pooler_config=None, compilation_config={"level":3,"custom_ops":["none"],"splitting_ops":["vllm.unified_attention","vllm.unified_attention_with_output"],"use_inductor":true,"compile_sizes":[],"use_cudagraph":true,"cudagraph_num_of_warmups":1,"cudagraph_capture_sizes":[512,504,496,488,480,472,464,456,448,440,432,424,416,408,400,392,384,376,368,360,352,344,336,328,320,312,304,296,288,280,272,264,256,248,240,232,224,216,208,200,192,184,176,168,160,152,144,136,128,120,112,104,96,88,80,72,64,56,48,40,32,24,16,8,4,2,1],"max_capture_size":512}
ERROR 04-09 12:19:38 [core.py:390] EngineCore hit an exception: Traceback (most recent call last):
ERROR 04-09 12:19:38 [core.py:390] File "/usr/local/lib/python3.12/dist-packages/vllm/v1/engine/core.py", line 383, in run_engine_core
ERROR 04-09 12:19:38 [core.py:390] engine_core.run_busy_loop()
ERROR 04-09 12:19:38 [core.py:390] File "/usr/local/lib/python3.12/dist-packages/vllm/v1/engine/core.py", line 405, in run_busy_loop
ERROR 04-09 12:19:38 [core.py:390] self._process_engine_step()
ERROR 04-09 12:19:38 [core.py:390] File "/usr/local/lib/python3.12/dist-packages/vllm/v1/engine/core.py", line 434, in _process_engine_step
ERROR 04-09 12:19:38 [core.py:390] outputs = self.step_fn()
ERROR 04-09 12:19:38 [core.py:390] ^^^^^^^^^^^^^^
ERROR 04-09 12:19:38 [core.py:390] File "/usr/local/lib/python3.12/dist-packages/vllm/v1/engine/core.py", line 206, in step
ERROR 04-09 12:19:38 [core.py:390] output = self.model_executor.execute_model(scheduler_output)
ERROR 04-09 12:19:38 [core.py:390] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 04-09 12:19:38 [core.py:390] File "/usr/local/lib/python3.12/dist-packages/vllm/v1/executor/abstract.py", line 77, in execute_model
ERROR 04-09 12:19:38 [core.py:390] output = self.collective_rpc("execute_model",
ERROR 04-09 12:19:38 [core.py:390] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 04-09 12:19:38 [core.py:390] File "/usr/local/lib/python3.12/dist-packages/vllm/v1/executor/multiproc_executor.py", line 134, in collective_rpc
ERROR 04-09 12:19:38 [core.py:390] raise e
ERROR 04-09 12:19:38 [core.py:390] File "/usr/local/lib/python3.12/dist-packages/vllm/v1/executor/multiproc_executor.py", line 123, in collective_rpc
ERROR 04-09 12:19:38 [core.py:390] raise result
ERROR 04-09 12:19:38 [core.py:390] IndexError: index out of range in self
ERROR 04-09 12:19:38 [core.py:390] Traceback (most recent call last):
ERROR 04-09 12:19:38 [core.py:390] File "/usr/local/lib/python3.12/dist-packages/vllm/v1/executor/multiproc_executor.py", line 376, in worker_busy_loop
ERROR 04-09 12:19:38 [core.py:390] output = func(*args, **kwargs)
ERROR 04-09 12:19:38 [core.py:390] ^^^^^^^^^^^^^^^^^^^^^
ERROR 04-09 12:19:38 [core.py:390] File "/usr/local/lib/python3.12/dist-packages/torch/utils/_contextlib.py", line 116, in decorate_context
ERROR 04-09 12:19:38 [core.py:390] return func(*args, **kwargs)
ERROR 04-09 12:19:38 [core.py:390] ^^^^^^^^^^^^^^^^^^^^^
ERROR 04-09 12:19:38 [core.py:390] File "/usr/local/lib/python3.12/dist-packages/vllm/v1/worker/gpu_worker.py", line 242, in execute_model
ERROR 04-09 12:19:38 [core.py:390] output = self.model_runner.execute_model(scheduler_output)
ERROR 04-09 12:19:38 [core.py:390] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 04-09 12:19:38 [core.py:390] File "/usr/local/lib/python3.12/dist-packages/torch/utils/_contextlib.py", line 116, in decorate_context
ERROR 04-09 12:19:38 [core.py:390] return func(*args, **kwargs)
ERROR 04-09 12:19:38 [core.py:390] ^^^^^^^^^^^^^^^^^^^^^
ERROR 04-09 12:19:38 [core.py:390] File "/usr/local/lib/python3.12/dist-packages/vllm/v1/worker/gpu_model_runner.py", line 994, in execute_model
ERROR 04-09 12:19:38 [core.py:390] self._prepare_inputs(scheduler_output))
ERROR 04-09 12:19:38 [core.py:390] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 04-09 12:19:38 [core.py:390] File "/usr/local/lib/python3.12/dist-packages/vllm/v1/worker/gpu_model_runner.py", line 532, in _prepare_inputs
ERROR 04-09 12:19:38 [core.py:390] torch.index_select(self.input_batch.token_ids_cpu_tensor.flatten(),
ERROR 04-09 12:19:38 [core.py:390] IndexError: index out of range in self
ERROR 04-09 12:19:38 [core.py:390]
ERROR 04-09 12:19:38 [core.py:390]
CRITICAL 04-09 12:19:38 [core_client.py:361] Got fatal signal from worker processes, shutting down. See stack trace above for root cause issue.
This happens under load, observed ~1000 successful requests but then the server hangs after the model runner error and all HTTP requests start timing out.
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working
Type
Projects
Status
Done