-
-
Notifications
You must be signed in to change notification settings - Fork 11k
Closed
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
PyTorch version: 2.6.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.31
Python version: 3.10.9 (main, Jan 11 2023, 15:21:40) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-136-generic-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA RTX A6000
Nvidia driver version: 570.124.06
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 46 bits physical, 57 bits virtual
CPU(s): 112
On-line CPU(s) list: 0-111
Thread(s) per core: 2
Core(s) per socket: 28
Socket(s): 2
NUMA node(s): 4
Vendor ID: GenuineIntel
CPU family: 6
Model: 106
Model name: Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz
Stepping: 6
CPU MHz: 2600.000
CPU max MHz: 3500.0000
CPU min MHz: 800.0000
BogoMIPS: 5200.00
Virtualization: VT-x
L1d cache: 2.6 MiB
L1i cache: 1.8 MiB
L2 cache: 70 MiB
L3 cache: 84 MiB
NUMA node0 CPU(s): 0-13,56-69
NUMA node1 CPU(s): 14-27,70-83
NUMA node2 CPU(s): 28-41,84-97
NUMA node3 CPU(s): 42-55,98-111
Vulnerability Gather data sampling: Mitigation; Microcode
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid fsrm md_clear pconfig flush_l1d arch_capabilities
Versions of relevant libraries:
[pip3] numpy==2.1.3
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-ml-py==12.570.86
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.4.0
[pip3] torch==2.6.0
[pip3] torchaudio==2.6.0
[pip3] torchvision==0.21.0
[pip3] transformers==4.51.2
[pip3] triton==3.2.0
[conda] numpy 2.1.3 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi
[conda] nvidia-cusparselt-cu12 0.6.2 pypi_0 pypi
[conda] nvidia-ml-py 12.570.86 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi
[conda] pyzmq 26.4.0 pypi_0 pypi
[conda] torch 2.6.0 pypi_0 pypi
[conda] torchaudio 2.6.0 pypi_0 pypi
[conda] torchvision 0.21.0 pypi_0 pypi
[conda] transformers 4.51.2 pypi_0 pypi
[conda] triton 3.2.0 pypi_0 pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.8.3
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X 0-13,56-69 0 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NVIDIA_VISIBLE_DEVICES=GPU-8ee38293-58bd-d0d0-dbfd-ac4a4711cf17
NVIDIA_REQUIRE_CUDA=cuda>=11.8 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471
NVIDIA_DRIVER_CAPABILITIES=graphics,utility,compute
CUDA_VERSION=11.8.0
LD_LIBRARY_PATH=/usr/local/cuda/lib:/usr/local/cuda/lib64:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
TORCHINDUCTOR_CACHE_DIR=/tmp/torchinductor_root
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
Without VLLM_USE_V1=0 I'm getting this error:
from vllm import LLM, SamplingParams
llm = LLM(model="facebook/opt-125m")
max_len = llm.llm_engine.model_config.max_model_len
sampling_params = SamplingParams(temperature=0, prompt_logprobs=1, max_tokens=1, detokenize=False)
tokens = llm.llm_engine.tokenizer.encode(" ".join(["foo bar"]*3000))
>>> res = llm.generate(prompt_token_ids = [tokens[:max_len], sampling_params=sampling_params)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/opt/miniconda3/lib/python3.10/site-packages/vllm/utils.py", line 1131, in inner
return fn(*args, **kwargs)
File "/opt/miniconda3/lib/python3.10/site-packages/vllm/entrypoints/llm.py", line 457, in generate
self._validate_and_add_requests(
File "/opt/miniconda3/lib/python3.10/site-packages/vllm/entrypoints/llm.py", line 1317, in _validate_and_add_requests
self._add_request(
File "/opt/miniconda3/lib/python3.10/site-packages/vllm/entrypoints/llm.py", line 1335, in _add_request
self.llm_engine.add_request(
File "/opt/miniconda3/lib/python3.10/site-packages/vllm/v1/engine/llm_engine.py", line 186, in add_request
request = self.processor.process_inputs(request_id, prompt, params,
File "/opt/miniconda3/lib/python3.10/site-packages/vllm/v1/engine/processor.py", line 209, in process_inputs
self._validate_model_inputs(processed_inputs, lora_request)
File "/opt/miniconda3/lib/python3.10/site-packages/vllm/v1/engine/processor.py", line 308, in _validate_model_inputs
raise ValueError(
ValueError: Prompt length of 2048 is longer than the maximum model length of 2048.
This doesn't happen with VLLM_USE_V1=0 and causes issues in existing evaluation code base OLMES and might also be present in the related Eleuther LM eval framework.
Arguably 2048 is not "longer than" 2048, and these frameworks have relied on being able to have a prompt using the full length of the model. Not sure if this is technically a bug, but would be useful to know if there are plans to make the behavior match the earlier versions?
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working