-
-
Couldn't load subscription status.
- Fork 10.8k
Closed
Closed
Copy link
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
The output of `python collect_env.py`
PyTorch version: 2.6.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04 LTS (x86_64)
GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0
Clang version: Could not collect
CMake version: version 4.0.0
Libc version: glibc-2.35
Python version: 3.12.9 | packaged by Anaconda, Inc. | (main, Feb 6 2025, 18:56:27) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.4.0-153-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A800-SXM4-80GB
GPU 1: NVIDIA A800-SXM4-80GB
GPU 2: NVIDIA A800-SXM4-80GB
GPU 3: NVIDIA A800-SXM4-80GB
GPU 4: NVIDIA A800-SXM4-80GB
GPU 5: NVIDIA A800-SXM4-80GB
GPU 6: NVIDIA A800-SXM4-80GB
GPU 7: NVIDIA A800-SXM4-80GB
Nvidia driver version: 535.161.08
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 43 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 192
On-line CPU(s) list: 0-79
Off-line CPU(s) list: 80-191
Vendor ID: AuthenticAMD
Model name: AMD EPYC 7643 48-Core Processor
CPU family: 25
Model: 1
Thread(s) per core: 2
Core(s) per socket: 48
Socket(s): 2
Stepping: 1
Frequency boost: enabled
CPU max MHz: 2300.0000
CPU min MHz: 1500.0000
BogoMIPS: 4591.58
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate sme ssbd mba sev ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca
Virtualization: AMD-V
L1d cache: 3 MiB (96 instances)
L1i cache: 3 MiB (96 instances)
L2 cache: 48 MiB (96 instances)
L3 cache: 512 MiB (16 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-47,96-143
NUMA node1 CPU(s): 48-95,144-191
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] flashinfer-python==0.2.2.post1+cu124torch2.6
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-ml-py==12.570.86
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pynvml==12.0.0
[pip3] pyzmq==26.4.0
[pip3] torch==2.6.0
[pip3] torchaudio==2.6.0
[pip3] torchvision==0.21.0
[pip3] transformers==4.51.1
[pip3] triton==3.2.0
[conda] flashinfer-python 0.2.2.post1+cu124torch2.6 pypi_0 pypi
[conda] numpy 1.26.4 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi
[conda] nvidia-cusparselt-cu12 0.6.2 pypi_0 pypi
[conda] nvidia-ml-py 12.570.86 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi
[conda] pynvml 12.0.0 pypi_0 pypi
[conda] pyzmq 26.4.0 pypi_0 pypi
[conda] torch 2.6.0 pypi_0 pypi
[conda] torchaudio 2.6.0 pypi_0 pypi
[conda] torchvision 0.21.0 pypi_0 pypi
[conda] transformers 4.51.1 pypi_0 pypi
[conda] triton 3.2.0 pypi_0 pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.8.2
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 NIC4 NIC5 NIC6 NIC7 NIC8 NIC9 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV8 NV8 NV8 NV8 NV8 NV8 NV8 NODE PXB PXB PXB SYS SYS PXB NODE SYS SYS 0-47 0 N/A
GPU1 NV8 X NV8 NV8 NV8 NV8 NV8 NV8 NODE PXB PXB PXB SYS SYS PXB NODE SYS SYS 0-47 0 N/A
GPU2 NV8 NV8 X NV8 NV8 NV8 NV8 NV8 PXB NODE NODE NODE SYS SYS NODE PXB SYS SYS 0-47 0 N/A
GPU3 NV8 NV8 NV8 X NV8 NV8 NV8 NV8 PXB NODE NODE NODE SYS SYS NODE PXB SYS SYS 0-47 0 N/A
GPU4 NV8 NV8 NV8 NV8 X NV8 NV8 NV8 SYS SYS SYS SYS NODE PXB SYS SYS PXB NODE 48-79 1 N/A
GPU5 NV8 NV8 NV8 NV8 NV8 X NV8 NV8 SYS SYS SYS SYS NODE PXB SYS SYS PXB NODE 48-79 1 N/A
GPU6 NV8 NV8 NV8 NV8 NV8 NV8 X NV8 SYS SYS SYS SYS PXB NODE SYS SYS NODE PXB 48-79 1 N/A
GPU7 NV8 NV8 NV8 NV8 NV8 NV8 NV8 X SYS SYS SYS SYS PXB NODE SYS SYS NODE PXB 48-79 1 N/A
NIC0 NODE NODE PXB PXB SYS SYS SYS SYS X NODE NODE NODE SYS SYS NODE PIX SYS SYS
NIC1 PXB PXB NODE NODE SYS SYS SYS SYS NODE X PIX PIX SYS SYS PIX NODE SYS SYS
NIC2 PXB PXB NODE NODE SYS SYS SYS SYS NODE PIX X PIX SYS SYS PIX NODE SYS SYS
NIC3 PXB PXB NODE NODE SYS SYS SYS SYS NODE PIX PIX X SYS SYS PIX NODE SYS SYS
NIC4 SYS SYS SYS SYS NODE NODE PXB PXB SYS SYS SYS SYS X NODE SYS SYS NODE PIX
NIC5 SYS SYS SYS SYS PXB PXB NODE NODE SYS SYS SYS SYS NODE X SYS SYS PIX NODE
NIC6 PXB PXB NODE NODE SYS SYS SYS SYS NODE PIX PIX PIX SYS SYS X NODE SYS SYS
NIC7 NODE NODE PXB PXB SYS SYS SYS SYS PIX NODE NODE NODE SYS SYS NODE X SYS SYS
NIC8 SYS SYS SYS SYS PXB PXB NODE NODE SYS SYS SYS SYS NODE PIX SYS SYS X NODE
NIC9 SYS SYS SYS SYS NODE NODE PXB PXB SYS SYS SYS SYS PIX NODE SYS SYS NODE X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3
NIC4: mlx5_4
NIC5: mlx5_5
NIC6: mlx5_6
NIC7: mlx5_7
NIC8: mlx5_8
NIC9: mlx5_9
NCCL_IB_TC=186
NCCL_IB_PCI_RELAXED_ORDERING=1
NCCL_SOCKET_IFNAME=eth0
NCCL_NVLS_ENABLE=0
NCCL_IB_HCA==mlx5_6,mlx5_7,mlx5_8,mlx5_9
NCCL_IB_GID_INDEX=5
NCCL_PXN_DISABLE=1
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
NCCL_IB_QPS_PER_CONNECTION=8
NCCL_IB_TIMEOUT=21
LD_LIBRARY_PATH=/data/cuda/cuda-12.4/cuda/lib64:/usr/local/nvidia/lib64
NCCL_IB_DISABLE=0
NCCL_IB_RETRY_CNT=7
NCCL_CUMEM_ENABLE=0
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
I want to drop all the parameters of the LLM engine and then load it from another state dict. The following code shows that level 1 is OK, while level 2 is problematic (cannot load the weights properly).
import torch
import torch.distributed as dist
from vllm import SamplingParams, LLM
from functools import cached_property
class SleepLevelTwoWakeUpIssue:
model_path = "Qwen/Qwen2.5-7B-Instruct"
def run(self):
self.log("\033[91mRaw weights:\033[0m")
self.generate_and_print()
self.sleep_and_wake_up(1)
self.log("\033[91mAfter sleep level 1:\033[0m")
self.generate_and_print()
self.sleep_and_wake_up(1, load_weights=True)
self.log("\033[91mAfter sleep level 1 and load weights:\033[0m")
self.generate_and_print()
self.sleep_and_wake_up(2)
self.log("\033[91mAfter sleep level 2:\033[0m")
self.generate_and_print()
self.sleep_and_wake_up(2, load_weights=True)
self.log("\033[91mAfter sleep level 2 and load weights:\033[0m")
self.generate_and_print()
def generate_and_print(self):
prompts = [
"Hello, how are you?",
"France is famous for its",
"The capital of USA is",
]
sampling_params = SamplingParams(max_tokens=100, temperature=1.0, stop=["\n"], seed=0)
outputs = self.llm.generate(prompts, sampling_params=sampling_params)
for output in outputs:
self.log(output.outputs[0].text)
def sleep_and_wake_up(self, level: int, load_weights: bool = False):
self.llm.sleep(level=level)
self.llm.wake_up()
if load_weights:
model = self.llm.llm_engine.model_executor.driver_worker.worker.model_runner.model
# model.load_weights(weights=self.state_dict.items()) # This leads to the same results
named_parameters, named_buffers = self.named_parameters_and_named_buffers
for name, param in named_parameters:
model.load_weights(weights=[(name, param)])
for name, buffer in named_buffers:
model.load_weights(weights=[(name, buffer)])
def log(self, message: str):
if dist.get_rank() != 0:
return
print(message)
@cached_property
def state_dict(self):
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(self.model_path)
return model.state_dict()
@cached_property
def named_parameters_and_named_buffers(self):
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(self.model_path)
named_parameters = list(model.named_parameters())
named_buffers = list(model.named_buffers())
return named_parameters, named_buffers
@cached_property
def llm(self):
return LLM(
enable_sleep_mode=True,
model=self.model_path,
gpu_memory_utilization=0.8,
distributed_executor_backend="external_launcher",
tensor_parallel_size=4,
max_model_len=16384,
seed=0,
disable_custom_all_reduce=True,
dtype="bfloat16",
)
if __name__ == "__main__":
dist.init_process_group(backend="nccl")
torch.cuda.set_device(dist.get_rank())
SleepLevelTwoWakeUpIssue().run()
dist.destroy_process_group()Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
EvanCley
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working
