-
-
Notifications
You must be signed in to change notification settings - Fork 10.8k
Closed
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
The output of python collect_env.py
INFO 05-11 18:34:35 [__init__.py:248] Automatically detected platform tpu.
Collecting environment information...
CUDA used to build PyTorch: None
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.3 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 4.0.0
Libc version: glibc-2.35
Python version: 3.10.16 (main, Dec 11 2024, 16:24:50) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-6.5.0-1013-gcp-x86_64-with-glibc2.35
Is CUDA available: False
CUDA runtime version: No CUDA
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: No CUDA
Nvidia driver version: No CUDA
cuDNN version: No CUDA
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 224
On-line CPU(s) list: 0-223
Vendor ID: AuthenticAMD
Model name: AMD EPYC 7B13
CPU family: 25
Model: 1
Thread(s) per core: 2
Core(s) per socket: 56
Socket(s): 2
Stepping: 0
BogoMIPS: 4899.99
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext invpcid_single ssbd ibrs ibpb stibp vmmcall fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr arat npt nrip_save umip vaes vpclmulqdq rdpid fsrm
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 3.5 MiB (112 instances)
L1i cache: 3.5 MiB (112 instances)
L2 cache: 56 MiB (112 instances)
L3 cache: 448 MiB (14 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-55,112-167
NUMA node1 CPU(s): 56-111,168-223
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Mitigation; safe RET
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP conditional, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] numpy==2.2.5
[pip3] pyzmq==26.4.0
[pip3] torch==2.8.0.dev20250430+cpu
[pip3] torch-xla==2.8.0+gita7c3e85
[pip3] torchvision==0.22.0.dev20250430+cpu
[pip3] transformers==4.51.3
[pip3] triton==3.3.0
[conda] numpy 2.2.5 pypi_0 pypi
[conda] pyzmq 26.4.0 pypi_0 pypi
[conda] torch 2.8.0.dev20250430+cpu pypi_0 pypi
[conda] torch-xla 2.8.0+gita7c3e85 pypi_0 pypi
[conda] torchvision 0.22.0.dev20250430+cpu pypi_0 pypi
[conda] transformers 4.51.3 pypi_0 pypi
[conda] triton 3.3.0 pypi_0 pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.1.dev6496+g4d66549.d20250511 (git sha: 4d66549, date: 20250511)
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
Could not collect
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
🐛 Describe the bug
When running examples/offline_inference/tpu.py, came up with the following issue:
Traceback (most recent call last):
File "/home/jcgu_google_com/anaconda3/envs/nixl/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
self.run()
File "/home/xxx/anaconda3/envs/nixl/lib/python3.10/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/home/xxx/vllm/vllm/v1/engine/core.py", line 425, in run_engine_core
raise e
File "/home/xxx/vllm/vllm/v1/engine/core.py", line 414, in run_engine_core
engine_core.run_busy_loop()
File "/home/xxx/vllm/vllm/v1/engine/core.py", line 438, in run_busy_loop
self._process_engine_step()
File "/home/xxx/vllm/vllm/v1/engine/core.py", line 463, in _process_engine_step
outputs = self.step_fn()
File "/home/xxx/vllm/vllm/v1/engine/core.py", line 226, in step
model_output = self.execute_model(scheduler_output)
File "/home/xxx/vllm/vllm/v1/engine/core.py", line 213, in execute_model
raise err
File "/home/xxx/vllm/vllm/v1/engine/core.py", line 207, in execute_model
return self.model_executor.execute_model(scheduler_output)
File "/home/xxx/vllm/vllm/v1/executor/abstract.py", line 86, in execute_model
output = self.collective_rpc("execute_model",
File "/home/xxx/vllm/vllm/executor/uniproc_executor.py", line 56, in collective_rpc
answer = run_method(self.driver_worker, method, args, kwargs)
File "/home/xxx/vllm/vllm/utils.py", line 2529, in run_method
return func(*args, **kwargs)
File "/home/xxx/vllm/vllm/v1/worker/tpu_worker.py", line 208, in execute_model
output = self.model_runner.execute_model(scheduler_output)
File "/home/xxx/anaconda3/envs/nixl/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
File "/home/xxx/vllm/vllm/v1/worker/tpu_model_runner.py", line 791, in execute_model
attn_metadata, logits_indices, padded_num_reqs = self._prepare_inputs(
File "/home/xxx/vllm/vllm/v1/worker/tpu_model_runner.py", line 535, in _prepare_inputs
np.add(block_numbers * self.block_size,
TypeError: return arrays must be of ArrayType
The slot_mapping tensor of the scheduled_tokens should be converted to an array. The issue was caused by #17483.
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working