-
-
Notifications
You must be signed in to change notification settings - Fork 11.4k
Closed
Labels
bugSomething isn't workingSomething isn't workingrayanything related with rayanything related with ray
Description
Your current environment
The output of python collect_env.py
==============================
System Info
==============================
OS : Ubuntu 22.04.4 LTS (x86_64)
GCC version : (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version : Could not collect
CMake version : version 3.22.1
Libc version : glibc-2.35
==============================
PyTorch Info
==============================
PyTorch version : 2.6.0+cu124
Is debug build : False
CUDA used to build PyTorch : 12.4
ROCM used to build PyTorch : N/A
==============================
Python Environment
==============================
Python version : 3.10.0 (default, Mar 3 2022, 09:58:08) [GCC 7.5.0] (64-bit runtime)
Python platform : Linux-5.15.0-116-generic-x86_64-with-glibc2.35
==============================
CUDA / GPU Info
==============================
Is CUDA available : True
CUDA runtime version : Could not collect
CUDA_MODULE_LOADING set to : LAZY
GPU models and configuration :
GPU 0: NVIDIA H100 80GB HBM3
GPU 1: NVIDIA H100 80GB HBM3
GPU 2: NVIDIA H100 80GB HBM3
GPU 3: NVIDIA H100 80GB HBM3
GPU 4: NVIDIA H100 80GB HBM3
GPU 5: NVIDIA H100 80GB HBM3
GPU 6: NVIDIA H100 80GB HBM3
GPU 7: NVIDIA H100 80GB HBM3
Nvidia driver version : 550.54.15
cuDNN version : Could not collect
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
CPU Info
==============================
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 128
On-line CPU(s) list: 0-127
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Platinum 8462Y+
CPU family: 6
Model: 143
Thread(s) per core: 2
Core(s) per socket: 32
Socket(s): 2
Stepping: 8
Frequency boost: enabled
CPU max MHz: 2801.0000
CPU min MHz: 800.0000
BogoMIPS: 5600.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities
Virtualization: VT-x
L1d cache: 3 MiB (64 instances)
L1i cache: 2 MiB (64 instances)
L2 cache: 128 MiB (64 instances)
L3 cache: 120 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-31,64-95
NUMA node1 CPU(s): 32-63,96-127
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
==============================
Versions of relevant libraries
==============================
[pip3] numpy==2.1.3
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==27.0.0
[pip3] torch==2.6.0
[pip3] torchaudio==2.6.0
[pip3] torchdata==0.11.0
[pip3] torchvision==0.21.0
[pip3] transformers==4.52.4
[pip3] triton==3.2.0
[conda] numpy 2.1.3 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi
[conda] nvidia-cusparselt-cu12 0.6.2 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi
[conda] pyzmq 27.0.0 pypi_0 pypi
[conda] torch 2.6.0 pypi_0 pypi
[conda] torchaudio 2.6.0 pypi_0 pypi
[conda] torchdata 0.11.0 pypi_0 pypi
[conda] torchvision 0.21.0 pypi_0 pypi
[conda] transformers 4.52.4 pypi_0 pypi
[conda] triton 3.2.0 pypi_0 pypi
==============================
vLLM Info
==============================
ROCM Version : Could not collect
Neuron SDK Version : N/A
vLLM Version : 0.8.3
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 NIC4 NIC5 NIC6 NIC7 NIC8 NIC9 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV18 NV18 NV18 NV18 NV18 NV18 NV18 PIX SYS SYS SYS SYS SYS SYS SYS SYS SYS 0-31,64-95 0 N/A
GPU1 NV18 X NV18 NV18 NV18 NV18 NV18 NV18 SYS PIX SYS SYS SYS SYS SYS SYS SYS SYS 0-31,64-95 0 N/A
GPU2 NV18 NV18 X NV18 NV18 NV18 NV18 NV18 SYS SYS PIX SYS SYS SYS SYS SYS SYS SYS 0-31,64-95 0 N/A
GPU3 NV18 NV18 NV18 X NV18 NV18 NV18 NV18 SYS SYS SYS SYS SYS PIX SYS SYS SYS SYS 0-31,64-95 0 N/A
GPU4 NV18 NV18 NV18 NV18 X NV18 NV18 NV18 SYS SYS SYS SYS SYS SYS PIX SYS SYS SYS 32-63,96-127 1 N/A
GPU5 NV18 NV18 NV18 NV18 NV18 X NV18 NV18 SYS SYS SYS SYS SYS SYS SYS PIX SYS SYS 32-63,96-127 1 N/A
GPU6 NV18 NV18 NV18 NV18 NV18 NV18 X NV18 SYS SYS SYS SYS SYS SYS SYS SYS PIX SYS 32-63,96-127 1 N/A
GPU7 NV18 NV18 NV18 NV18 NV18 NV18 NV18 X SYS SYS SYS SYS SYS SYS SYS SYS SYS PIX 32-63,96-127 1 N/A
NIC0 PIX SYS SYS SYS SYS SYS SYS SYS X SYS SYS SYS SYS SYS SYS SYS SYS SYS
NIC1 SYS PIX SYS SYS SYS SYS SYS SYS SYS X SYS SYS SYS SYS SYS SYS SYS SYS
NIC2 SYS SYS PIX SYS SYS SYS SYS SYS SYS SYS X SYS SYS SYS SYS SYS SYS SYS
NIC3 SYS SYS SYS SYS SYS SYS SYS SYS SYS SYS SYS X PIX SYS SYS SYS SYS SYS
NIC4 SYS SYS SYS SYS SYS SYS SYS SYS SYS SYS SYS PIX X SYS SYS SYS SYS SYS
NIC5 SYS SYS SYS PIX SYS SYS SYS SYS SYS SYS SYS SYS SYS X SYS SYS SYS SYS
NIC6 SYS SYS SYS SYS PIX SYS SYS SYS SYS SYS SYS SYS SYS SYS X SYS SYS SYS
NIC7 SYS SYS SYS SYS SYS PIX SYS SYS SYS SYS SYS SYS SYS SYS SYS X SYS SYS
NIC8 SYS SYS SYS SYS SYS SYS PIX SYS SYS SYS SYS SYS SYS SYS SYS SYS X SYS
NIC9 SYS SYS SYS SYS SYS SYS SYS PIX SYS SYS SYS SYS SYS SYS SYS SYS SYS X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3
NIC4: mlx5_4
NIC5: mlx5_5
NIC6: mlx5_6
NIC7: mlx5_7
NIC8: mlx5_8
NIC9: mlx5_9
==============================
Environment Variables
==============================
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
when I use the verl to for training, sometimes a error occured:
Fatal Python error: none_dealloc: deallocating None
�[36m(WorkerDict pid=494481)�[0m Python runtime state: initialized
�[36m(WorkerDict pid=494481)�[0m
�[36m(WorkerDict pid=494481)�[0m Thread 0x00007f36860ff640 (most recent call first):
�[36m(WorkerDict pid=494481)�[0m <no Python frame>
�[36m(WorkerDict pid=494481)�[0m
�[36m(WorkerDict pid=494481)�[0m Thread 0x00007f3687bfd640 (most recent call first):
�[36m(WorkerDict pid=494481)�[0m File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/site-packages/vllm/usage/usage_lib.py", line 229 in _report_continous_usage
�[36m(WorkerDict pid=494481)�[0m File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/site-packages/vllm/usage/usage_lib.py", line 164 in _report_usage_worker
�[36m(WorkerDict pid=494481)�[0m File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/threading.py", line 946 in run
�[36m(WorkerDict pid=494481)�[0m File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/threading.py", line 1009 in _bootstrap_inner
�[36m(WorkerDict pid=494481)�[0m File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/threading.py", line 966 in _bootstrap
�[36m(WorkerDict pid=494481)�[0m
�[36m(WorkerDict pid=494481)�[0m Thread 0x00007f37cd7fe640 (most recent call first):
�[36m(WorkerDict pid=494481)�[0m File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/site-packages/torch/_inductor/compile_worker/subproc_pool.py", line 53 in _recv_msg
�[36m(WorkerDict pid=494481)�[0m File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/site-packages/torch/_inductor/compile_worker/subproc_pool.py", line 161 in _read_thread
�[36m(WorkerDict pid=494481)�[0m File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/threading.py", line 946 in run
�[36m(WorkerDict pid=494481)�[0m File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/threading.py", line 1009 in _bootstrap_inner
�[36m(WorkerDict pid=494481)�[0m File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/threading.py", line 966 in _bootstrap
�[36m(WorkerDict pid=494481)�[0m
�[36m(WorkerDict pid=494481)�[0m Thread 0x00007f3800ddd640 (most recent call first):
�[36m(WorkerDict pid=494481)�[0m File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/threading.py", line 324 in wait
�[36m(WorkerDict pid=494481)�[0m File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/threading.py", line 600 in wait
�[36m(WorkerDict pid=494481)�[0m File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/site-packages/tqdm/_monitor.py", line 60 in run
�[36m(WorkerDict pid=494481)�[0m File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/threading.py", line 1009 in _bootstrap_inner
�[36m(WorkerDict pid=494481)�[0m File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/threading.py", line 966 in _bootstrap
�[36m(WorkerDict pid=494481)�[0m
�[36m(WorkerDict pid=494481)�[0m Current thread 0x00007f6b14dda740 (most recent call first):
�[36m(WorkerDict pid=494481)�[0m File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/site-packages/vllm/device_allocator/cumem.py", line 81 in unmap_and_release
�[36m(WorkerDict pid=494481)�[0m File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/site-packages/vllm/device_allocator/cumem.py", line 206 in sleep
�[36m(WorkerDict pid=494481)�[0m File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/site-packages/vllm/v1/worker/gpu_worker.py", line 90 in sleep
�[36m(WorkerDict pid=494481)�[0m File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/site-packages/vllm/utils.py", line 2456 in run_method
�[36m(WorkerDict pid=494481)�[0m File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/site-packages/vllm/executor/uniproc_executor.py", line 56 in collective_rpc
�[36m(WorkerDict pid=494481)�[0m File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/site-packages/vllm/executor/executor_base.py", line 206 in sleep
�[36m(WorkerDict pid=494481)�[0m File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/site-packages/vllm/v1/engine/core.py", line 268 in sleep
�[36m(WorkerDict pid=494481)�[0m File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/site-packages/vllm/v1/engine/core_client.py", line 220 in sleep
�[36m(WorkerDict pid=494481)�[0m File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/site-packages/vllm/v1/engine/llm_engine.py", line 245 in sleep
�[36m(WorkerDict pid=494481)�[0m File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/site-packages/vllm/entrypoints/llm.py", line 1254 in sleep
�[36m(WorkerDict pid=494481)�[0m File "/data01/linxiang/verl/verl/workers/sharding_manager/fsdp_vllm.py", line 216 in __exit__
�[36m(WorkerDict pid=494481)�[0m File "/data01/linxiang/verl/verl/utils/debug/performance.py", line 88 in log
�[36m(WorkerDict pid=494481)�[0m File "/data01/linxiang/verl/verl/utils/debug/performance.py", line 78 in f
�[36m(WorkerDict pid=494481)�[0m File "/data01/linxiang/verl/verl/workers/fsdp_workers.py", line 692 in generate_sequences
�[36m(WorkerDict pid=494481)�[0m File "/data01/linxiang/verl/verl/single_controller/base/decorator.py", line 540 in inner
�[36m(WorkerDict pid=494481)�[0m File "/data01/linxiang/verl/verl/single_controller/ray/base.py", line 645 in func
�[36m(WorkerDict pid=494481)�[0m File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/site-packages/ray/util/tracing/tracing_helper.py", line 463 in _resume_span
�[36m(WorkerDict pid=494481)�[0m File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/site-packages/ray/_private/function_manager.py", line 689 in actor_method_executor
�[36m(WorkerDict pid=494481)�[0m File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/site-packages/ray/_private/worker.py", line 953 in main_loop
�[36m(WorkerDict pid=494481)�[0m File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/site-packages/ray/_private/workers/default_worker.py", line 330 in <module>
�[36m(WorkerDict pid=494481)�[0m
�[36m(WorkerDict pid=494481)�[0m Extension modules: msgpack._cmsgpack, google._upb._message, psutil._psutil_linux, psutil._psutil_posix, setproctitle, yaml._yaml, charset_normalizer.md, requests.packages.charset_normalizer.md, requests.packages.chardet.md, uvloop.loop, ray._raylet, numpy._core._multiarray_umath, numpy.linalg._umath_linalg, pyarrow.lib, numpy.random._common, numpy.random.bit_generator, numpy.random._bounded_integers, numpy.random._mt19937, numpy.random.mtrand, numpy.random._philox, numpy.random._pcg64, numpy.random._sfc64, numpy.random._generator, pandas._libs.tslibs.ccalendar, pandas._libs.tslibs.np_datetime, pandas._libs.tslibs.dtypes, pandas._libs.tslibs.base, pandas._libs.tslibs.nattype, pandas._libs.tslibs.timezones, pandas._libs.tslibs.fields, pandas._libs.tslibs.timedeltas, pandas._libs.tslibs.tzconversion, pandas._libs.tslibs.timestamps, pandas._libs.properties, pandas._libs.tslibs.offsets, pandas._libs.tslibs.strptime, pandas._libs.tslibs.parsing, pandas._libs.tslibs.conversion, pandas._libs.tslibs.period, pandas._libs.tslibs.vectorized, pandas._libs.ops_dispatch, pandas._libs.missing, pandas._libs.hashtable, pandas._libs.algos, pandas._libs.interval, pandas._libs.lib, pyarrow._compute, pandas._libs.ops, pandas._libs.hashing, pandas._libs.arrays, pandas._libs.tslib, pandas._libs.sparse, pandas._libs.internals, pandas._libs.indexing, pandas._libs.index, pandas._libs.writers, pandas._libs.join, pandas._libs.window.aggregations, pandas._libs.window.indexers, pandas._libs.reshape, pandas._libs.groupby, pandas._libs.json, pandas._libs.parsers, pandas._libs.testing, torch._C, torch._C._dynamo.autograd_compiler, torch._C._dynamo.eval_frame, torch._C._dynamo.guards, torch._C._dynamo.utils, torch._C._fft, torch._C._linalg, torch._C._nested, torch._C._nn, torch._C._sparse, torch._C._special, regex._regex, markupsafe._speedups, PIL._imaging, scipy._lib._ccallback_c, scipy.linalg._fblas, scipy.linalg._flapack, scipy.linalg.cython_lapack, scipy.linalg._cythonized_array_utils, scipy.linalg._solve_toeplitz, scipy.linalg._decomp_lu_cython, scipy.linalg._matfuncs_sqrtm_triu, scipy.linalg._matfuncs_expm, scipy.linalg._linalg_pythran, scipy.linalg.cython_blas, scipy.linalg._decomp_update, scipy.sparse._sparsetools, _csparsetools, scipy.sparse._csparsetools, scipy.sparse.linalg._dsolve._superlu, scipy.sparse.linalg._eigen.arpack._arpack, scipy.sparse.linalg._propack._spropack, scipy.sparse.linalg._propack._dpropack, scipy.sparse.linalg._propack._cpropack, scipy.sparse.linalg._propack._zpropack, scipy.sparse.csgraph._tools, scipy.sparse.csgraph._shortest_path, scipy.sparse.csgraph._traversal, scipy.sparse.csgraph._min_spanning_tree, scipy.sparse.csgraph._flow, scipy.sparse.csgraph._matching, scipy.sparse.csgraph._reordering, scipy.optimize._group_columns, scipy._lib.messagestream, scipy.optimize._trlib._trlib, scipy.optimize._lbfgsb, _moduleTNC, scipy.optimize._moduleTNC, scipy.optimize._cobyla, scipy.optimize._slsqp, scipy.optimize._minpack, scipy.optimize._lsq.givens_elimination, scipy.optimize._zeros, scipy.optimize._cython_nnls, scipy._lib._uarray._uarray, scipy.special._ufuncs_cxx, scipy.special._ufuncs, scipy.special._specfun, scipy.special._comb, scipy.special._ellip_harm_2, scipy.linalg._decomp_interpolative, scipy.optimize._bglu_dense, scipy.optimize._lsap, scipy.spatial._ckdtree, scipy.spatial._qhull, scipy.spatial._voronoi, scipy.spatial._distance_wrap, scipy.spatial._hausdorff, scipy.spatial.transform._rotation, scipy.optimize._direct, PIL._imagingft, pyarrow._json, zmq.backend.cython._zmq, msgspec._core, multidict._multidict, yarl._quoting_c, propcache._helpers_c, aiohttp._http_writer, aiohttp._http_parser, aiohttp._websocket.mask, aiohttp._websocket.reader_c, frozenlist._frozenlist, sentencepiece._sentencepiece, vllm.cumem_allocator, numba.core.typeconv._typeconv, numba._helperlib, numba._dynfunc, numba._dispatcher, numba.core.typing.builtins.itertools, numba.cpython.builtins.math, numba.core.runtime._nrt_python, numba.np.ufunc._internal, numba.experimental.jitclass._box (total: 157)
�[33m(raylet)�[0m A worker died or was killed while executing a task by an unexpected system error. To troubleshoot the problem, check the logs for the dead worker. RayTask ID: ffffffffffffffff7710216a6912f94f21d0dafe01000000 Worker ID: a3633a269a5f0c238cab926642fc00db4d898cc87b76fa7c125ddb7b Node ID: 995f2037a22f7f703ce135becd5d1eddb50454abcbe62dd8b9c6bd9b Worker IP address: 10.0.30.111 Worker port: 44415 Worker PID: 494481 Worker exit type: SYSTEM_ERROR Worker exit detail: Worker unexpectedly exits with a connection error code 2. End of file. There are some potential root causes. (1) The process is killed by SIGKILL by OOM killer due to high memory usage. (2) ray stop --force is called. (3) The worker is crashed unexpectedly due to SIGSEGV or other unexpected errors.
Error executing job with overrides: ['data.train_files=/data01/linxiang/datasets/Merge_COT/grpo_merge_all_0618.jsonl', 'data.val_files=/data01/linxiang/datasets/Merge_COT/dapo_merge_all_0618_val.jsonl', 'data.prompt_key=prompt', 'data.truncation=left', 'data.max_prompt_length=512', 'data.max_response_length=1536', 'data.gen_batch_size=4', 'data.train_batch_size=4', 'actor_rollout_ref.rollout.n=8', 'algorithm.adv_estimator=grpo', 'algorithm.use_kl_in_reward=False', 'algorithm.kl_ctrl.kl_coef=0.0', 'actor_rollout_ref.actor.use_kl_loss=False', 'actor_rollout_ref.actor.kl_loss_coef=0.0', 'actor_rollout_ref.actor.clip_ratio_low=0.2', 'actor_rollout_ref.actor.clip_ratio_high=0.28', 'actor_rollout_ref.actor.clip_ratio_c=10.0', 'algorithm.filter_groups.enable=True', 'algorithm.filter_groups.metric=seq_final_reward', 'actor_rollout_ref.model.use_remove_padding=False', 'actor_rollout_ref.actor.use_dynamic_bsz=False', 'actor_rollout_ref.ref.log_prob_use_dynamic_bsz=False', 'actor_rollout_ref.rollout.log_prob_use_dynamic_bsz=False', 'actor_rollout_ref.actor.ppo_max_token_len_per_gpu=2048', 'actor_rollout_ref.ref.log_prob_max_token_len_per_gpu=2048', 'actor_rollout_ref.rollout.log_prob_max_token_len_per_gpu=2048', 'actor_rollout_ref.model.path=/data01/linxiang/ft_qwen2audio/exp/model_full_v6/qwen2-audio-7b-instruct/v0-20250603-150803/Qwen2-Audio-7b-instruct', 'actor_rollout_ref.model.enable_gradient_checkpointing=True', 'actor_rollout_ref.actor.optim.lr=1e-6', 'actor_rollout_ref.actor.optim.lr_warmup_steps=10', 'actor_rollout_ref.actor.optim.weight_decay=0.1', 'actor_rollout_ref.actor.ppo_mini_batch_size=1', 'actor_rollout_ref.actor.fsdp_config.param_offload=True', 'actor_rollout_ref.actor.fsdp_config.optimizer_offload=True', 'actor_rollout_ref.actor.entropy_coeff=0', 'actor_rollout_ref.actor.grad_clip=1.0', 'actor_rollout_ref.actor.loss_agg_mode=seq-mean-token-mean', 'actor_rollout_ref.actor.ulysses_sequence_parallel_size=1', 'actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=1', 'actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=1', 'actor_rollout_ref.rollout.gpu_memory_utilization=0.80', 'actor_rollout_ref.rollout.tensor_model_parallel_size=1', 'actor_rollout_ref.rollout.enable_chunked_prefill=True', 'actor_rollout_ref.rollout.max_num_batched_tokens=2048', 'actor_rollout_ref.rollout.temperature=1.0', 'actor_rollout_ref.rollout.top_p=1.0', 'actor_rollout_ref.rollout.top_k=-1', 'actor_rollout_ref.rollout.val_kwargs.temperature=1.0', 'actor_rollout_ref.rollout.val_kwargs.top_p=0.7', 'actor_rollout_ref.rollout.val_kwargs.top_k=-1', 'actor_rollout_ref.rollout.val_kwargs.do_sample=True', 'actor_rollout_ref.rollout.val_kwargs.n=1', 'actor_rollout_ref.ref.fsdp_config.param_offload=True', 'actor_rollout_ref.ref.ulysses_sequence_parallel_size=1', 'actor_rollout_ref.actor.fsdp_config.fsdp_size=-1', 'reward_model.reward_manager=dapo', 'reward_model.overlong_buffer.enable=False', 'reward_model.overlong_buffer.len=4096', 'reward_model.overlong_buffer.penalty_factor=1.0', 'trainer.logger=[console]', 'trainer.project_name=DAPO', 'trainer.experiment_name=DAPO-SFT-base-Our-Merge', 'trainer.n_gpus_per_node=4', 'trainer.nnodes=1', 'trainer.val_before_train=False', 'trainer.test_freq=9999', 'trainer.save_freq=10', 'trainer.total_epochs=1', 'trainer.default_local_dir=/data01/linxiang/DAPO/exp/DAPO-SFT-base-Our-Merge', 'trainer.resume_mode=auto']
Traceback (most recent call last):
File "/data01/linxiang/verl/recipe/dapo/main_dapo.py", line 29, in main
run_ppo(config)
File "/data01/linxiang/verl/recipe/dapo/main_dapo.py", line 41, in run_ppo
ray.get(runner.run.remote(config))
File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/site-packages/ray/_private/auto_init_hook.py", line 22, in auto_init_wrapper
return fn(*args, **kwargs)
File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/site-packages/ray/_private/client_mode_hook.py", line 104, in wrapper
return func(*args, **kwargs)
File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/site-packages/ray/_private/worker.py", line 2849, in get
values, debugger_breakpoint = worker.get_objects(object_refs, timeout=timeout)
File "/home/linxiang/miniconda3/envs/DAPO/lib/python3.10/site-packages/ray/_private/worker.py", line 937, in get_objects
raise value.as_instanceof_cause()
ray.exceptions.RayTaskError(ActorDiedError): �[36mray::TaskRunner.run()�[39m (pid=493818, ip=10.0.30.111, actor_id=6a5b7ebbcd1c3ca37ee09cca01000000, repr=<main_dapo.TaskRunner object at 0x7f776ffcab60>)
File "/data01/linxiang/verl/recipe/dapo/main_dapo.py", line 180, in run
trainer.fit()
File "/data01/linxiang/verl/recipe/dapo/dapo_ray_trainer.py", line 121, in fit
gen_batch_output = self.actor_rollout_wg.generate_sequences(gen_batch)
File "/data01/linxiang/verl/verl/single_controller/ray/base.py", line 51, in __call__
output = ray.get(output)
ray.exceptions.ActorDiedError: The actor died unexpectedly before finishing this task.
class_name: create_colocated_worker_cls.<locals>.WorkerDict
actor_id: 7710216a6912f94f21d0dafe01000000
pid: 494481
name: u0ROzkWorkerDict_0:0
namespace: fabeee12-0caa-43c7-884d-63df03d73e8d
ip: 10.0.30.111
The actor is dead because its worker process has died. Worker exit type: SYSTEM_ERROR Worker exit detail: Worker unexpectedly exits with a connection error code 2. End of file. There are some potential root causes. (1) The process is killed by SIGKILL by OOM killer due to high memory usage. (2) ray stop --force is called. (3) The worker is crashed unexpectedly due to SIGSEGV or other unexpected errors.
I wonder if its the version conflict?? My pip list is following:
Package Version
---------------------------------------- -------------
accelerate 1.8.1
aiohappyeyeballs 2.6.1
aiohttp 3.12.13
aiohttp-cors 0.8.1
aiosignal 1.3.2
airportsdata 20250622
annotated-types 0.7.0
antlr4-python3-runtime 4.9.3
anyio 4.9.0
astor 0.8.1
async-timeout 5.0.1
attrs 25.3.0
blake3 1.0.5
cachetools 5.5.2
certifi 2025.6.15
cfgv 3.4.0
charset-normalizer 3.4.2
click 8.2.1
cloudpickle 3.1.1
codetiming 1.4.0
colorful 0.5.6
compressed-tensors 0.9.2
cupy-cuda12x 13.4.1
datasets 3.6.0
Deprecated 1.2.18
depyf 0.18.0
dill 0.3.8
diskcache 5.6.3
distlib 0.3.9
distro 1.9.0
dnspython 2.7.0
einops 0.8.1
email_validator 2.2.0
exceptiongroup 1.3.0
fastapi 0.115.13
fastapi-cli 0.0.7
fastrlock 0.8.3
filelock 3.18.0
frozenlist 1.7.0
fsspec 2025.3.0
gguf 0.10.0
gitdb 4.0.12
GitPython 3.1.44
google-api-core 2.25.1
google-auth 2.40.3
googleapis-common-protos 1.70.0
grpcio 1.73.0
h11 0.16.0
hf-xet 1.1.5
httpcore 1.0.9
httptools 0.6.4
httpx 0.28.1
huggingface-hub 0.33.0
hydra-core 1.3.2
identify 2.6.12
idna 3.10
importlib_metadata 8.0.0
interegular 0.3.3
Jinja2 3.1.6
jiter 0.10.0
jsonschema 4.24.0
jsonschema-specifications 2025.4.1
lark 1.2.2
latex2sympy2_extended 1.10.2
liger_kernel 0.5.10
llguidance 0.7.30
llvmlite 0.44.0
lm-format-enforcer 0.10.11
markdown-it-py 3.0.0
MarkupSafe 3.0.2
math-verify 0.8.0
mdurl 0.1.2
mistral_common 1.6.2
mpmath 1.3.0
msgpack 1.1.1
msgspec 0.19.0
multidict 6.5.1
multiprocess 0.70.16
nanobind 2.7.0
nest-asyncio 1.6.0
networkx 3.4.2
ninja 1.11.1.4
nodeenv 1.9.1
numba 0.61.0
numpy 2.1.3
nvidia-cublas-cu12 12.4.5.8
nvidia-cuda-cupti-cu12 12.4.127
nvidia-cuda-nvrtc-cu12 12.4.127
nvidia-cuda-runtime-cu12 12.4.127
nvidia-cudnn-cu12 9.1.0.70
nvidia-cufft-cu12 11.2.1.3
nvidia-curand-cu12 10.3.5.147
nvidia-cusolver-cu12 11.6.1.9
nvidia-cusparse-cu12 12.3.1.170
nvidia-cusparselt-cu12 0.6.2
nvidia-nccl-cu12 2.21.5
nvidia-nvjitlink-cu12 12.4.127
nvidia-nvtx-cu12 12.4.127
omegaconf 2.3.0
openai 1.91.0
opencensus 0.11.4
opencensus-context 0.1.3
opencv-python-headless 4.11.0.86
opentelemetry-api 1.26.0
opentelemetry-exporter-otlp 1.26.0
opentelemetry-exporter-otlp-proto-common 1.26.0
opentelemetry-exporter-otlp-proto-grpc 1.26.0
opentelemetry-exporter-otlp-proto-http 1.26.0
opentelemetry-exporter-prometheus 0.47b0
opentelemetry-proto 1.26.0
opentelemetry-sdk 1.26.0
opentelemetry-semantic-conventions 0.47b0
opentelemetry-semantic-conventions-ai 0.4.9
orjson 3.10.18
outlines 0.1.11
outlines_core 0.1.26
packaging 25.0
pandas 2.3.0
partial-json-parser 0.2.1.1.post6
peft 0.15.2
pillow 11.2.1
pip 25.1
platformdirs 4.3.8
pre_commit 4.2.0
prometheus_client 0.22.1
prometheus-fastapi-instrumentator 7.1.0
propcache 0.3.2
proto-plus 1.26.1
protobuf 4.25.8
psutil 7.0.0
py-cpuinfo 9.0.0
py-spy 0.4.0
pyarrow 19.0.0
pyasn1 0.6.1
pyasn1_modules 0.4.2
pybind11 2.13.6
pycountry 24.6.1
pydantic 2.11.7
pydantic_core 2.33.2
Pygments 2.19.2
pylatexenc 2.10
python-dateutil 2.9.0.post0
python-dotenv 1.1.1
python-json-logger 3.3.0
python-multipart 0.0.20
pytz 2025.2
PyYAML 6.0.2
pyzmq 27.0.0
ray 2.47.1
referencing 0.36.2
regex 2024.11.6
requests 2.32.4
rich 14.0.0
rich-toolkit 0.14.7
rpds-py 0.25.1
rsa 4.9.1
safetensors 0.5.3
scipy 1.15.3
sentencepiece 0.2.0
sentry-sdk 2.31.0
setproctitle 1.3.6
setuptools 78.1.1
shellingham 1.5.4
six 1.17.0
smart-open 7.1.0
smmap 5.0.2
sniffio 1.3.1
starlette 0.46.2
sympy 1.13.1
tabulate 0.9.0
tensordict 0.6.2
tiktoken 0.9.0
tokenizers 0.21.2
torch 2.6.0
torchaudio 2.6.0
torchdata 0.11.0
torchvision 0.21.0
tqdm 4.67.1
transformers 4.52.4
triton 3.2.0
typer 0.16.0
typing_extensions 4.14.0
typing-inspection 0.4.1
tzdata 2025.2
urllib3 2.5.0
uvicorn 0.34.3
uvloop 0.21.0
verl 0.4.1
virtualenv 20.31.2
vllm 0.8.3
wandb 0.20.1
watchfiles 1.1.0
websockets 15.0.1
wheel 0.45.1
wrapt 1.17.2
xformers 0.0.29.post2
xgrammar 0.1.17
xxhash 3.5.0
yarl 1.20.1
zipp 3.23.0
and my command is:
#!/usr/bin/env bash
set -xeuo pipefail
export CUDA_VISIBLE_DEVICES=4,5,6,7
GPU_NUM=4
project_name='DAPO'
exp_name='DAPO-SFT-base-AVQA'
adv_estimator=grpo
save_freq=10
test_freq=9999
use_kl_in_reward=False
kl_coef=0.0
use_kl_loss=False
kl_loss_coef=0.0
clip_ratio_low=0.2
clip_ratio_high=0.28
max_prompt_length=512 # 2048 1536
max_response_length=1536 # 2536 20480 1536
enable_overlong_buffer=False
overlong_buffer_len=$((512 * 4))
overlong_penalty_factor=1.0
loss_agg_mode="seq-mean-token-mean"
filter_groups_metric="seq_final_reward"
# max_num_gen_batches=10
enable_filter_groups=True
gen_prompt_bsz=4
train_prompt_bsz=4
train_prompt_mini_bsz=1
n_resp_per_prompt=8
NNODES=1
# MODEL_PATH=${MODEL_PATH:-"/Qwen2-Audio-7b-instruct"}
MODEL_PATH=${MODEL_PATH:-"/Qwen2-Audio-7b-instruct"}
CKPTS_DIR=${CKPTS_DIR:-"/DAPO/exp/${exp_name}"}
TRAIN_FILE=${TRAIN_FILE:-"/rain_qa_updated.jsonl"}
TEST_FILE=${TEST_FILE:-"/apo_merge_all_0618_val.jsonl"}
# Algorithm
temperature=1.0
top_p=1.0
top_k=-1 # 0 for HF rollout, -1 for vLLM rollout
val_top_p=0.7
# Performance Related Parameter
sp_size=1
use_dynamic_bsz=False
actor_ppo_max_token_len=$((max_prompt_length + max_response_length))
infer_ppo_max_token_len=$((max_prompt_length + max_response_length))
offload=True
gen_tp=1
micro_batch_size=1
export RAY_DISABLE_WORKER_RESTART=1
export VLLM_USE_V1=1
python3 -m recipe.dapo.main_dapo \
data.train_files="${TRAIN_FILE}" \
data.val_files="${TEST_FILE}" \
data.prompt_key=prompt \
data.truncation='left' \
data.max_prompt_length=${max_prompt_length} \
data.max_response_length=${max_response_length} \
data.gen_batch_size=${gen_prompt_bsz} \
data.train_batch_size=${train_prompt_bsz} \
actor_rollout_ref.rollout.n=${n_resp_per_prompt} \
algorithm.adv_estimator=${adv_estimator} \
algorithm.use_kl_in_reward=${use_kl_in_reward} \
algorithm.kl_ctrl.kl_coef=${kl_coef} \
actor_rollout_ref.actor.use_kl_loss=${use_kl_loss} \
actor_rollout_ref.actor.kl_loss_coef=${kl_loss_coef} \
actor_rollout_ref.actor.clip_ratio_low=${clip_ratio_low} \
actor_rollout_ref.actor.clip_ratio_high=${clip_ratio_high} \
actor_rollout_ref.actor.clip_ratio_c=10.0 \
algorithm.filter_groups.enable=${enable_filter_groups} \
algorithm.filter_groups.metric=${filter_groups_metric} \
actor_rollout_ref.model.use_remove_padding=False \
actor_rollout_ref.actor.use_dynamic_bsz=${use_dynamic_bsz} \
actor_rollout_ref.ref.log_prob_use_dynamic_bsz=${use_dynamic_bsz} \
actor_rollout_ref.rollout.log_prob_use_dynamic_bsz=${use_dynamic_bsz} \
actor_rollout_ref.actor.ppo_max_token_len_per_gpu=${actor_ppo_max_token_len} \
actor_rollout_ref.ref.log_prob_max_token_len_per_gpu=${infer_ppo_max_token_len} \
actor_rollout_ref.rollout.log_prob_max_token_len_per_gpu=${infer_ppo_max_token_len} \
actor_rollout_ref.model.path="${MODEL_PATH}" \
actor_rollout_ref.model.enable_gradient_checkpointing=True \
actor_rollout_ref.actor.optim.lr=1e-6 \
actor_rollout_ref.actor.optim.lr_warmup_steps=10 \
actor_rollout_ref.actor.optim.weight_decay=0.1 \
actor_rollout_ref.actor.ppo_mini_batch_size=${train_prompt_mini_bsz} \
actor_rollout_ref.actor.fsdp_config.param_offload=${offload} \
actor_rollout_ref.actor.fsdp_config.optimizer_offload=${offload} \
actor_rollout_ref.actor.entropy_coeff=0 \
actor_rollout_ref.actor.grad_clip=1.0 \
actor_rollout_ref.actor.loss_agg_mode=${loss_agg_mode} \
actor_rollout_ref.actor.ulysses_sequence_parallel_size=${sp_size} \
actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=${micro_batch_size} \
actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=${micro_batch_size} \
actor_rollout_ref.rollout.gpu_memory_utilization=0.80 \
actor_rollout_ref.rollout.tensor_model_parallel_size=${gen_tp} \
actor_rollout_ref.rollout.enable_chunked_prefill=True \
actor_rollout_ref.rollout.max_num_batched_tokens=$((max_prompt_length + max_response_length)) \
actor_rollout_ref.rollout.temperature=${temperature} \
actor_rollout_ref.rollout.top_p=${top_p} \
actor_rollout_ref.rollout.top_k="${top_k}" \
actor_rollout_ref.rollout.val_kwargs.temperature=${temperature} \
actor_rollout_ref.rollout.val_kwargs.top_p=${val_top_p} \
actor_rollout_ref.rollout.val_kwargs.top_k=${top_k} \
actor_rollout_ref.rollout.val_kwargs.do_sample=True \
actor_rollout_ref.rollout.val_kwargs.n=1 \
actor_rollout_ref.ref.fsdp_config.param_offload=${offload} \
actor_rollout_ref.ref.ulysses_sequence_parallel_size=${sp_size} \
actor_rollout_ref.actor.fsdp_config.fsdp_size=-1 \
reward_model.reward_manager=dapo \
reward_model.overlong_buffer.enable=${enable_overlong_buffer} \
reward_model.overlong_buffer.len=${overlong_buffer_len} \
reward_model.overlong_buffer.penalty_factor=${overlong_penalty_factor} \
trainer.logger=['console'] \
trainer.project_name="${project_name}" \
trainer.experiment_name="${exp_name}" \
trainer.n_gpus_per_node=${GPU_NUM} \
trainer.nnodes=1 \
trainer.val_before_train=False \
trainer.test_freq=${test_freq} \
trainer.save_freq=${save_freq} \
trainer.total_epochs=1 \
trainer.default_local_dir="${CKPTS_DIR}" \
trainer.resume_mode=auto \
> /data01/linxiang/DAPO/logs/AVQA_0703-8.txt 2>&1
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't workingrayanything related with rayanything related with ray
Type
Projects
Status
Done