Skip to content

[Bug] [torch.compile]: torch.compile throws shared tensor guard error if data attribute is accessed #22938

@kylesayrs

Description

@kylesayrs

Your current environment

The output of python collect_env.py
Collecting environment information...
==============================
        System Info
==============================
OS                           : Ubuntu 22.04.3 LTS (x86_64)
GCC version                  : (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version                : Could not collect
CMake version                : Could not collect
Libc version                 : glibc-2.35

==============================
       PyTorch Info
==============================
PyTorch version              : 2.7.1+cu126
Is debug build               : False
CUDA used to build PyTorch   : 12.6
ROCM used to build PyTorch   : N/A

==============================
      Python Environment
==============================
Python version               : 3.10.12 (main, May 27 2025, 17:12:29) [GCC 11.4.0] (64-bit runtime)
Python platform              : Linux-5.15.0-91-generic-x86_64-with-glibc2.35

==============================
       CUDA / GPU Info
==============================
Is CUDA available            : True
CUDA runtime version         : Could not collect
CUDA_MODULE_LOADING set to   : LAZY
GPU models and configuration : 
GPU 0: NVIDIA A100-SXM4-80GB
GPU 1: NVIDIA A100-SXM4-80GB
GPU 2: NVIDIA A100-SXM4-80GB
GPU 3: NVIDIA A100-SXM4-80GB
GPU 4: NVIDIA A100-SXM4-80GB
GPU 5: NVIDIA A100-SXM4-80GB
GPU 6: NVIDIA A100-SXM4-80GB
GPU 7: NVIDIA A100-SXM4-80GB

Nvidia driver version        : 570.133.20
cuDNN version                : Could not collect
HIP runtime version          : N/A
MIOpen runtime version       : N/A
Is XNNPACK available         : True

==============================
          CPU Info
==============================
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      48 bits physical, 48 bits virtual
Byte Order:                         Little Endian
CPU(s):                             256
On-line CPU(s) list:                0-255
Vendor ID:                          AuthenticAMD
Model name:                         AMD EPYC 7763 64-Core Processor
CPU family:                         25
Model:                              1
Thread(s) per core:                 2
Core(s) per socket:                 64
Socket(s):                          2
Stepping:                           1
Frequency boost:                    enabled
CPU max MHz:                        3529.0520
CPU min MHz:                        1500.0000
BogoMIPS:                           4899.66
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm
Virtualization:                     AMD-V
L1d cache:                          4 MiB (128 instances)
L1i cache:                          4 MiB (128 instances)
L2 cache:                           64 MiB (128 instances)
L3 cache:                           512 MiB (16 instances)
NUMA node(s):                       2
NUMA node0 CPU(s):                  0-63,128-191
NUMA node1 CPU(s):                  64-127,192-255
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Not affected
Vulnerability Retbleed:             Not affected
Vulnerability Spec rstack overflow: Mitigation; safe RET
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Not affected

==============================
Versions of relevant libraries
==============================
[pip3] mypy==1.14.1
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-cufile-cu12==1.11.1.6
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-ml-py==12.570.86
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] pyzmq==26.2.1
[pip3] sentence-transformers==3.2.1
[pip3] torch==2.7.1
[pip3] torchaudio==2.7.1
[pip3] torchvision==0.22.1
[pip3] transformers==4.55.0
[pip3] transformers-stream-generator==0.0.5
[pip3] triton==3.3.1
[pip3] tritonclient==2.51.0
[pip3] vector-quantize-pytorch==1.21.2
[conda] Could not collect

==============================
         vLLM Info
==============================
ROCM Version                 : Could not collect
Neuron SDK Version           : N/A
vLLM Version                 : 0.10.1.dev449+g9d1510377.d20250811 (git sha: 9d1510377, date: 20250811)
vLLM Build Flags:
  CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
  	�[4mGPU0	GPU1	GPU2	GPU3	GPU4	GPU5	GPU6	GPU7	NIC0	NIC1	NIC2	NIC3	NIC4	NIC5	NIC6	NIC7	CPU Affinity	NUMA Affinity	GPU NUMA ID�[0m
GPU0	 X 	NV12	NV12	NV12	NV12	NV12	NV12	NV12	NODE	NODE	PXB	PXB	SYS	SYS	SYS	SYS	0-63,128-191	0		N/A
GPU1	NV12	 X 	NV12	NV12	NV12	NV12	NV12	NV12	NODE	NODE	PXB	PXB	SYS	SYS	SYS	SYS	0-63,128-191	0		N/A
GPU2	NV12	NV12	 X 	NV12	NV12	NV12	NV12	NV12	PXB	PXB	NODE	NODE	SYS	SYS	SYS	SYS	0-63,128-191	0		N/A
GPU3	NV12	NV12	NV12	 X 	NV12	NV12	NV12	NV12	PXB	PXB	NODE	NODE	SYS	SYS	SYS	SYS	0-63,128-191	0		N/A
GPU4	NV12	NV12	NV12	NV12	 X 	NV12	NV12	NV12	SYS	SYS	SYS	SYS	NODE	NODE	PXB	PXB	64-127,192-255	1		N/A
GPU5	NV12	NV12	NV12	NV12	NV12	 X 	NV12	NV12	SYS	SYS	SYS	SYS	NODE	NODE	PXB	PXB	64-127,192-255	1		N/A
GPU6	NV12	NV12	NV12	NV12	NV12	NV12	 X 	NV12	SYS	SYS	SYS	SYS	PXB	PXB	NODE	NODE	64-127,192-255	1		N/A
GPU7	NV12	NV12	NV12	NV12	NV12	NV12	NV12	 X 	SYS	SYS	SYS	SYS	PXB	PXB	NODE	NODE	64-127,192-255	1		N/A
NIC0	NODE	NODE	PXB	PXB	SYS	SYS	SYS	SYS	 X 	PIX	NODE	NODE	SYS	SYS	SYS	SYS				
NIC1	NODE	NODE	PXB	PXB	SYS	SYS	SYS	SYS	PIX	 X 	NODE	NODE	SYS	SYS	SYS	SYS				
NIC2	PXB	PXB	NODE	NODE	SYS	SYS	SYS	SYS	NODE	NODE	 X 	PXB	SYS	SYS	SYS	SYS				
NIC3	PXB	PXB	NODE	NODE	SYS	SYS	SYS	SYS	NODE	NODE	PXB	 X 	SYS	SYS	SYS	SYS				
NIC4	SYS	SYS	SYS	SYS	NODE	NODE	PXB	PXB	SYS	SYS	SYS	SYS	 X 	PXB	NODE	NODE				
NIC5	SYS	SYS	SYS	SYS	NODE	NODE	PXB	PXB	SYS	SYS	SYS	SYS	PXB	 X 	NODE	NODE				
NIC6	SYS	SYS	SYS	SYS	PXB	PXB	NODE	NODE	SYS	SYS	SYS	SYS	NODE	NODE	 X 	PXB				
NIC7	SYS	SYS	SYS	SYS	PXB	PXB	NODE	NODE	SYS	SYS	SYS	SYS	NODE	NODE	PXB	 X 				

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_0
  NIC1: mlx5_1
  NIC2: mlx5_2
  NIC3: mlx5_3
  NIC4: mlx5_4
  NIC5: mlx5_5
  NIC6: mlx5_6
  NIC7: mlx5_7

==============================
     Environment Variables
==============================
CUDA_VISIBLE_DEVICES=0,1
CUDA_VISIBLE_DEVICES=0,1
LD_LIBRARY_PATH=/home/kyle/llm-compressor/env/lib/python3.10/site-packages/nvidia/nvjitlink/lib:/home/kyle/llm-compressor/env/lib/python3.10/site-packages/nvidia/nvjitlink/lib:/usr/local/cuda-12.3/lib64
CUDA_HOME=/usr/local/cuda
CUDA_HOME=/usr/local/cuda
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

🐛 Describe the bug

Context

For more context, see #22937. TLDR, I'm trying to pass a model's data into a linear kernel.

Bug Description

Attempting to access the data attribute of a vllm parameter causes torch.compile to raise an error about duplicate tensors, despite there being no duplicate tensors in the model.

This error does not get raised if the data attribute is accessed outside of the forward function, which leads me to thinking that this is either a torch.compile issue or related to a change to torch.compile done by vllm.
main...neuralmagic:vllm:kylesayrs/access-data

AssertionError: Guard check failed: 0/0: Duplicate tensors found: ["self._modules['layers']._modules['0']._modules['mlp']._modules['down_proj']._parameters['weight'].data", "self._modules['layers']._modules['1']._modules['mlp']._modules['down_proj']._parameters['weight'].data", "self._modules['layers']._modules['2']._modules['mlp']._modules['down_proj']._parameters['weight'].data","self._modules['layers']._modules['3']._modules['mlp']._modules['down_proj']._parameters['weight'].data",

...

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions