Skip to content

[Bug]: EngineCore died unexpectedly When Inference llama(generate) #23517

@zoeczy

Description

@zoeczy

Your current environment

The output of python collect_env.py
==============================
        System Info
==============================
OS                           : Ubuntu 24.04.1 LTS (x86_64)
GCC version                  : (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
Clang version                : Could not collect
CMake version                : version 3.28.3
Libc version                 : glibc-2.39

==============================
       PyTorch Info
==============================
PyTorch version              : 2.7.1+cu126
Is debug build               : False
CUDA used to build PyTorch   : 12.6
ROCM used to build PyTorch   : N/A

==============================
      Python Environment
==============================
Python version               : 3.12.11 | packaged by Anaconda, Inc. | (main, Jun  5 2025, 13:09:17) [GCC 11.2.0] (64-bit runtime)
Python platform              : Linux-6.14.0-28-generic-x86_64-with-glibc2.39

==============================
       CUDA / GPU Info
==============================
Is CUDA available            : True
CUDA runtime version         : 12.8.61
CUDA_MODULE_LOADING set to   : LAZY
GPU models and configuration : 
GPU 0: NVIDIA GeForce RTX 4060 Ti
GPU 1: NVIDIA GeForce RTX 4060 Ti

Nvidia driver version        : 570.181
cuDNN version                : Could not collect
HIP runtime version          : N/A
MIOpen runtime version       : N/A
Is XNNPACK available         : True

==============================
          CPU Info
==============================
Architecture:                            x86_64
CPU op-mode(s):                          32-bit, 64-bit
Address sizes:                           48 bits physical, 48 bits virtual
Byte Order:                              Little Endian
CPU(s):                                  32
On-line CPU(s) list:                     0-31
Vendor ID:                               AuthenticAMD
Model name:                              AMD Ryzen 9 9950X3D 16-Core Processor
CPU family:                              26
Model:                                   68
Thread(s) per core:                      2
Core(s) per socket:                      16
Socket(s):                               1
Stepping:                                0
Frequency boost:                         enabled
CPU(s) scaling MHz:                      74%
CPU max MHz:                             5756.0000
CPU min MHz:                             600.0000
BogoMIPS:                                8599.99
Flags:                                   fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good amd_lbr_v2 nopl xtopology nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local user_shstk avx_vnni avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif x2avic v_spec_ctrl vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid bus_lock_detect movdiri movdir64b overflow_recov succor smca fsrm avx512_vp2intersect flush_l1d amd_lbr_pmc_freeze
Virtualization:                          AMD-V
L1d cache:                               768 KiB (16 instances)
L1i cache:                               512 KiB (16 instances)
L2 cache:                                16 MiB (16 instances)
L3 cache:                                128 MiB (2 instances)
NUMA node(s):                            1
NUMA node0 CPU(s):                       0-31
Vulnerability Gather data sampling:      Not affected
Vulnerability Ghostwrite:                Not affected
Vulnerability Indirect target selection: Not affected
Vulnerability Itlb multihit:             Not affected
Vulnerability L1tf:                      Not affected
Vulnerability Mds:                       Not affected
Vulnerability Meltdown:                  Not affected
Vulnerability Mmio stale data:           Not affected
Vulnerability Reg file data sampling:    Not affected
Vulnerability Retbleed:                  Not affected
Vulnerability Spec rstack overflow:      Mitigation; IBPB on VMEXIT only
Vulnerability Spec store bypass:         Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:                Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:                Mitigation; Enhanced / Automatic IBRS; IBPB conditional; STIBP always-on; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                     Not affected
Vulnerability Tsx async abort:           Not affected

==============================
Versions of relevant libraries
==============================
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-cufile-cu12==1.11.1.6
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] pyzmq==27.0.2
[pip3] torch==2.7.1
[pip3] torchaudio==2.7.1
[pip3] torchvision==0.22.1
[pip3] transformers==4.55.3
[pip3] triton==3.3.1
[conda] numpy                     2.2.6                    pypi_0    pypi
[conda] nvidia-cublas-cu12        12.6.4.1                 pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.6.80                  pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.6.77                  pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.6.77                  pypi_0    pypi
[conda] nvidia-cudnn-cu12         9.5.1.17                 pypi_0    pypi
[conda] nvidia-cufft-cu12         11.3.0.4                 pypi_0    pypi
[conda] nvidia-cufile-cu12        1.11.1.6                 pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.7.77                pypi_0    pypi
[conda] nvidia-cusolver-cu12      11.7.1.2                 pypi_0    pypi
[conda] nvidia-cusparse-cu12      12.5.4.2                 pypi_0    pypi
[conda] nvidia-cusparselt-cu12    0.6.3                    pypi_0    pypi
[conda] nvidia-nccl-cu12          2.26.2                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.6.85                  pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.6.77                  pypi_0    pypi
[conda] pyzmq                     27.0.2                   pypi_0    pypi
[conda] torch                     2.7.1                    pypi_0    pypi
[conda] torchaudio                2.7.1                    pypi_0    pypi
[conda] torchvision               0.22.1                   pypi_0    pypi
[conda] transformers              4.55.3                   pypi_0    pypi
[conda] triton                    3.3.1                    pypi_0    pypi

==============================
         vLLM Info
==============================
ROCM Version                 : Could not collect
Neuron SDK Version           : N/A
vLLM Version                 : 0.10.1rc2.dev101+g7be5d113d (git sha: 7be5d113d)
vLLM Build Flags:
  CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
        GPU0    GPU1    NIC0    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      PHB     PHB     0-31    0               N/A
GPU1    PHB      X      PHB     0-31    0               N/A
NIC0    PHB     PHB      X 

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_0

==============================
     Environment Variables
==============================
LD_LIBRARY_PATH=/usr/local/cuda/lib64:
CUDA_HOME=/usr/local/cuda
CUDA_HOME=/usr/local/cuda
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

🐛 Describe the bug

My script runs inference on the Llama2-7b model using 2 GPUs with tensor parallelism and float16 precision. During inference, I observed:

When instantiating the LLM, GPU memory usage suddenly spikes (from 7 GB → 14 GB per GPU). I’m not sure why—could it be due to CUDA Graph capture or KV cache allocation?

During token generation, an error occurs: “engine core died unexpectedly”.

from vllm import LLM
llm = LLM("/home/workspace/models/llama2-7b-hf",
          dtype="float16",
          tensor_parallel_size=2,
          max_seq_len_to_capture=256,
          max_model_len=256,
          gpu_memory_utilization=0.9,
          disable_log_stats=False)

output = llm.generate("hello, my gpu! How are you feeling today? please tell")
print(output)
The output of log for python test.py
python test.py 
INFO 08-25 11:01:16 [__init__.py:241] Automatically detected platform cuda.
INFO 08-25 11:01:16 [utils.py:326] non-default args: {'model': '/home/workspace/models/llama2-7b-hf', 'dtype': 'float16', 'max_model_len': 256, 'tensor_parallel_size': 2, 'max_seq_len_to_capture': 256}
INFO 08-25 11:01:19 [__init__.py:736] Resolved architecture: LlamaForCausalLM
INFO 08-25 11:01:19 [__init__.py:1777] Using max model len 256
INFO 08-25 11:01:19 [scheduler.py:222] Chunked prefill is enabled with max_num_batched_tokens=8192.
(EngineCore_0 pid=675221) INFO 08-25 11:01:19 [core.py:644] Waiting for init message from front-end.
(EngineCore_0 pid=675221) INFO 08-25 11:01:19 [core.py:74] Initializing a V1 LLM engine (v0.10.1rc2.dev101+g7be5d113d) with config: model='/home/workspace/models/llama2-7b-hf', speculative_config=None, tokenizer='/home/workspace/models/llama2-7b-hf', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config={}, tokenizer_revision=None, trust_remote_code=False, dtype=torch.float16, max_seq_len=256, download_dir=None, load_format=auto, tensor_parallel_size=2, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, device_config=cuda, decoding_config=DecodingConfig(backend='auto', disable_fallback=False, disable_any_whitespace=False, disable_additional_properties=False, reasoning_backend=''), observability_config=ObservabilityConfig(show_hidden_metrics_for_version=None, otlp_traces_endpoint=None, collect_detailed_traces=None), seed=0, served_model_name=/home/workspace/models/llama2-7b-hf, enable_prefix_caching=True, chunked_prefill_enabled=True, use_async_output_proc=True, pooler_config=None, compilation_config={"level":3,"debug_dump_path":"","cache_dir":"","backend":"","custom_ops":[],"splitting_ops":["vllm.unified_attention","vllm.unified_attention_with_output","vllm.mamba_mixer2"],"use_inductor":true,"compile_sizes":[],"inductor_compile_config":{"enable_auto_functionalized_v2":false},"inductor_passes":{},"cudagraph_mode":1,"use_cudagraph":true,"cudagraph_num_of_warmups":1,"cudagraph_capture_sizes":[512,504,496,488,480,472,464,456,448,440,432,424,416,408,400,392,384,376,368,360,352,344,336,328,320,312,304,296,288,280,272,264,256,248,240,232,224,216,208,200,192,184,176,168,160,152,144,136,128,120,112,104,96,88,80,72,64,56,48,40,32,24,16,8,4,2,1],"cudagraph_copy_inputs":false,"full_cuda_graph":false,"pass_config":{},"max_capture_size":512,"local_cache_dir":null}
(EngineCore_0 pid=675221) WARNING 08-25 11:01:19 [multiproc_worker_utils.py:273] Reducing Torch parallelism from 16 threads to 1 to avoid unnecessary CPU contention. Set OMP_NUM_THREADS in the external environment to tune this value as needed.
(EngineCore_0 pid=675221) INFO 08-25 11:01:19 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[0, 1], buffer_handle=(2, 16777216, 10, 'psm_854adbea'), local_subscribe_addr='ipc:///tmp/fdee9f1c-1de6-4997-9d3f-b7fd1a25e7ea', remote_subscribe_addr=None, remote_addr_ipv6=False)
(EngineCore_0 pid=675221) (VllmWorker TP1 pid=675229) INFO 08-25 11:01:20 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_eb777793'), local_subscribe_addr='ipc:///tmp/2c46459a-d2e0-4b53-a8b9-050ae1f7b416', remote_subscribe_addr=None, remote_addr_ipv6=False)
(EngineCore_0 pid=675221) (VllmWorker TP0 pid=675227) INFO 08-25 11:01:20 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_73f5191a'), local_subscribe_addr='ipc:///tmp/76664b92-a96a-46c1-8bee-ac1c8959e6fc', remote_subscribe_addr=None, remote_addr_ipv6=False)
(EngineCore_0 pid=675221) (VllmWorker TP0 pid=675227) INFO 08-25 11:01:21 [__init__.py:1418] Found nccl from library libnccl.so.2
(EngineCore_0 pid=675221) (VllmWorker TP1 pid=675229) INFO 08-25 11:01:21 [__init__.py:1418] Found nccl from library libnccl.so.2
(EngineCore_0 pid=675221) (VllmWorker TP0 pid=675227) INFO 08-25 11:01:21 [pynccl.py:70] vLLM is using nccl==2.26.2
(EngineCore_0 pid=675221) (VllmWorker TP1 pid=675229) INFO 08-25 11:01:21 [pynccl.py:70] vLLM is using nccl==2.26.2
(EngineCore_0 pid=675221) (VllmWorker TP0 pid=675227) INFO 08-25 11:01:21 [custom_all_reduce.py:35] Skipping P2P check and trusting the driver's P2P report.
(EngineCore_0 pid=675221) (VllmWorker TP1 pid=675229) INFO 08-25 11:01:21 [custom_all_reduce.py:35] Skipping P2P check and trusting the driver's P2P report.
(EngineCore_0 pid=675221) (VllmWorker TP1 pid=675229) WARNING 08-25 11:01:21 [custom_all_reduce.py:147] Custom allreduce is disabled because your platform lacks GPU P2P capability or P2P test failed. To silence this warning, specify disable_custom_all_reduce=True explicitly.
(EngineCore_0 pid=675221) (VllmWorker TP0 pid=675227) WARNING 08-25 11:01:21 [custom_all_reduce.py:147] Custom allreduce is disabled because your platform lacks GPU P2P capability or P2P test failed. To silence this warning, specify disable_custom_all_reduce=True explicitly.
(EngineCore_0 pid=675221) (VllmWorker TP0 pid=675227) INFO 08-25 11:01:21 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[1], buffer_handle=(1, 4194304, 6, 'psm_09664453'), local_subscribe_addr='ipc:///tmp/270f2538-fa87-4dc8-ba6b-7b89799e535b', remote_subscribe_addr=None, remote_addr_ipv6=False)
(EngineCore_0 pid=675221) (VllmWorker TP0 pid=675227) INFO 08-25 11:01:21 [parallel_state.py:1134] rank 0 in world size 2 is assigned as DP rank 0, PP rank 0, TP rank 0, EP rank 0
(EngineCore_0 pid=675221) (VllmWorker TP1 pid=675229) INFO 08-25 11:01:21 [parallel_state.py:1134] rank 1 in world size 2 is assigned as DP rank 0, PP rank 0, TP rank 1, EP rank 1
(EngineCore_0 pid=675221) (VllmWorker TP0 pid=675227) WARNING 08-25 11:01:21 [topk_topp_sampler.py:61] FlashInfer is not available. Falling back to the PyTorch-native implementation of top-p & top-k sampling. For the best performance, please install FlashInfer.
(EngineCore_0 pid=675221) (VllmWorker TP1 pid=675229) WARNING 08-25 11:01:21 [topk_topp_sampler.py:61] FlashInfer is not available. Falling back to the PyTorch-native implementation of top-p & top-k sampling. For the best performance, please install FlashInfer.
(EngineCore_0 pid=675221) (VllmWorker TP1 pid=675229) INFO 08-25 11:01:21 [gpu_model_runner.py:1970] Starting to load model /home/workspace/models/llama2-7b-hf...
(EngineCore_0 pid=675221) (VllmWorker TP0 pid=675227) INFO 08-25 11:01:21 [gpu_model_runner.py:1970] Starting to load model /home/workspace/models/llama2-7b-hf...
(EngineCore_0 pid=675221) (VllmWorker TP1 pid=675229) INFO 08-25 11:01:21 [gpu_model_runner.py:2002] Loading model from scratch...
(EngineCore_0 pid=675221) (VllmWorker TP0 pid=675227) INFO 08-25 11:01:21 [gpu_model_runner.py:2002] Loading model from scratch...
(EngineCore_0 pid=675221) (VllmWorker TP1 pid=675229) INFO 08-25 11:01:21 [cuda.py:328] Using Flash Attention backend on V1 engine.
(EngineCore_0 pid=675221) (VllmWorker TP0 pid=675227) INFO 08-25 11:01:21 [cuda.py:328] Using Flash Attention backend on V1 engine.
Loading safetensors checkpoint shards:   0% Completed | 0/2 [00:00<?, ?it/s]
Loading safetensors checkpoint shards:  50% Completed | 1/2 [00:00<00:00,  3.56it/s]
Loading safetensors checkpoint shards: 100% Completed | 2/2 [00:01<00:00,  1.68it/s]
Loading safetensors checkpoint shards: 100% Completed | 2/2 [00:01<00:00,  1.83it/s]
(EngineCore_0 pid=675221) (VllmWorker TP0 pid=675227) 
(EngineCore_0 pid=675221) (VllmWorker TP1 pid=675229) INFO 08-25 11:01:23 [default_loader.py:267] Loading weights took 1.13 seconds
(EngineCore_0 pid=675221) (VllmWorker TP0 pid=675227) INFO 08-25 11:01:23 [default_loader.py:267] Loading weights took 1.13 seconds
(EngineCore_0 pid=675221) (VllmWorker TP1 pid=675229) INFO 08-25 11:01:23 [gpu_model_runner.py:2024] Model loading took 6.3102 GiB and 1.202797 seconds
(EngineCore_0 pid=675221) (VllmWorker TP0 pid=675227) INFO 08-25 11:01:23 [gpu_model_runner.py:2024] Model loading took 6.3102 GiB and 1.202734 seconds
(EngineCore_0 pid=675221) (VllmWorker TP1 pid=675229) INFO 08-25 11:01:26 [backends.py:548] Using cache directory: /home/congziyi/.cache/vllm/torch_compile_cache/13b4bc42ee/rank_1_0/backbone for vLLM's torch.compile
(EngineCore_0 pid=675221) (VllmWorker TP0 pid=675227) INFO 08-25 11:01:26 [backends.py:548] Using cache directory: /home/congziyi/.cache/vllm/torch_compile_cache/13b4bc42ee/rank_0_0/backbone for vLLM's torch.compile
(EngineCore_0 pid=675221) (VllmWorker TP0 pid=675227) INFO 08-25 11:01:26 [backends.py:559] Dynamo bytecode transform time: 2.91 s
(EngineCore_0 pid=675221) (VllmWorker TP1 pid=675229) INFO 08-25 11:01:26 [backends.py:559] Dynamo bytecode transform time: 2.91 s
(EngineCore_0 pid=675221) (VllmWorker TP1 pid=675229) INFO 08-25 11:01:28 [backends.py:161] Directly load the compiled graph(s) for dynamic shape from the cache, took 1.735 s
(EngineCore_0 pid=675221) (VllmWorker TP0 pid=675227) INFO 08-25 11:01:28 [backends.py:161] Directly load the compiled graph(s) for dynamic shape from the cache, took 1.746 s
(EngineCore_0 pid=675221) (VllmWorker TP1 pid=675229) INFO 08-25 11:01:28 [monitor.py:34] torch.compile takes 2.91 s in total
(EngineCore_0 pid=675221) (VllmWorker TP0 pid=675227) INFO 08-25 11:01:28 [monitor.py:34] torch.compile takes 2.91 s in total
(EngineCore_0 pid=675221) (VllmWorker TP0 pid=675227) INFO 08-25 11:01:31 [gpu_worker.py:277] Available KV cache memory: 7.14 GiB
(EngineCore_0 pid=675221) (VllmWorker TP1 pid=675229) INFO 08-25 11:01:31 [gpu_worker.py:277] Available KV cache memory: 7.14 GiB
(EngineCore_0 pid=675221) INFO 08-25 11:01:31 [kv_cache_utils.py:849] GPU KV cache size: 29,216 tokens
(EngineCore_0 pid=675221) INFO 08-25 11:01:31 [kv_cache_utils.py:853] Maximum concurrency for 256 tokens per request: 114.12x
(EngineCore_0 pid=675221) INFO 08-25 11:01:31 [kv_cache_utils.py:849] GPU KV cache size: 29,216 tokens
(EngineCore_0 pid=675221) INFO 08-25 11:01:31 [kv_cache_utils.py:853] Maximum concurrency for 256 tokens per request: 114.12x
Capturing CUDA graphs (mixed prefill-decode, PIECEWISE): 100%|████████████████████████████████████████████| 67/67 [00:05<00:00, 12.83it/s](EngineCore_0 pid=675221) (VllmWorker TP1 pid=675229) INFO 08-25 11:01:37 [gpu_model_runner.py:2724] Graph capturing finished in 5 secs, took 0.70 GiB
(EngineCore_0 pid=675221) (VllmWorker TP0 pid=675227) INFO 08-25 11:01:37 [gpu_model_runner.py:2724] Graph capturing finished in 5 secs, took 0.70 GiB
(EngineCore_0 pid=675221) INFO 08-25 11:01:37 [core.py:215] init engine (profile, create kv cache, warmup model) took 13.66 seconds
INFO 08-25 11:01:37 [llm.py:298] Supported_tasks: ['generate']
WARNING 08-25 11:01:37 [__init__.py:1652] Default sampling parameters have been overridden by the model's Hugging Face generation config recommended from the model creator. If this is not intended, please relaunch vLLM instance with `--generation-config vllm`.
Adding requests: 100%|█████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 822.25it/s]Processed prompts: 100%|██████████████████████████████| 1/1 [00:00<00:00,  2.31it/s, est. speed input: 34.60 toks/s, output: 36.91 toks/s][RequestOutput(request_id=0, prompt='hello, my gpu! How are you feeling today? please tell', prompt_token_ids=[1, 22172, 29892, 590, 330, 3746, 29991, 1128, 526, 366, 11223, 9826, 29973, 3113, 2649], encoder_prompt=None, encoder_prompt_token_ids=None, prompt_logprobs=None, outputs=[CompletionOutput(index=0, text=" me how much you're worth, because I'm not sure how to", token_ids=[592, 920, 1568, 366, 29915, 276, 7088, 29892, 1363, 306, 29915, 29885, 451, 1854, 920, 304], cumulative_logprob=None, logprobs=None, finish_reason=length, stop_reason=None)], finished=True, metrics=None, lora_request=None, num_cached_tokens=0, multi_modal_placeholders={})]
ERROR 08-25 11:01:38 [core_client.py:562] Engine core proc EngineCore_0 died unexpectedly, shutting down client.

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions